• Laser & Optoelectronics Progress
  • Vol. 58, Issue 13, 1306001 (2021)
Zuyuan He* and Qingwen Liu
Author Affiliations
  • State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/LOP202158.1306001 Cite this Article Set citation alerts
    Zuyuan He, Qingwen Liu. Principles and Applications of Optical Fiber Distributed Acoustic Sensors[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306001 Copy Citation Text show less
    References

    [1] Cai H W, Ye Q, Wang Z Y et al. Distributed optical fiber acoustic sensing technology based on coherent Rayleigh scattering[J]. Laser & Optoelectronics Progress, 57, 050001(2020).

    [2] Juarez J C, Maier E W, Choi K N et al. Distributed fiber-optic intrusion sensor system[J]. Journal of Lightwave Technology, 23, 2081-2087(2005).

    [3] Ma H Y, Wang X X, Ma F et al. Research progress of Φ-OTDR distributed optical fiber acoustic sensor[J]. Laser & Optoelectronics Progress, 57, 130005(2020).

    [4] Zhang X P, Ding Z W, Hong R et al. Phase sensitive optical time-domain reflective distributed optical fiber sensing technology[J]. Acta Optica Sinica, 41, 0106004(2021).

    [5] Song J, Li W H, Lu P et al. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry[J]. IEEE Photonics Journal, 6, 1-8(2014).

    [6] Arbel D, Eyal A. Dynamic optical frequency domain reflectometry[J]. Optics Express, 22, 8823-8830(2014).

    [7] Li J, Gan J L, Zhang Z S et al. High spatial resolution distributed fiber strain sensor based on phase-OFDR[J]. Optics Express, 25, 27913-27922(2017).

    [8] Li H, Liu Q W, Chen D et al. High-spatial-resolution fiber-optic distributed acoustic sensor based on Φ-OFDR with enhanced crosstalk suppression[J]. Optics Letters, 45, 563-566(2020).

    [9] Liu Q W, Liu L, Fan X Y et al. A novel optical fiber reflectometry technique with high spatial resolution and long distance[C], AW3I.2(2014).

    [10] Liu Q W, Fan X Y, He Z Y. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range[J]. Optics Express, 23, 25988-25995(2015).

    [11] Barnoski M K, Jensen S M. Fiber waveguides: a novel technique for investigating attenuation characteristics[J]. Applied Optics, 15, 2112-2115(1976).

    [12] Izumita H, Koyamada Y, Furukawa S et al. The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena[J]. Journal of Lightwave Technology, 12, 1230-1238(1994).

    [13] Eickhoff W, Ulrich R. Optical frequency-domain reflectometry in single-mode fibers[C], WF3(1981).

    [14] Mussi G, Gisin N, Passy R et al. -152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry[J]. Electronics Letters, 32, 926-927(1996).

    [15] von der Weid J P, Passy R, Gisin N. Mid-range coherent optical frequency domain reflectometry with a DFB laser diode coupled to an external cavity[J]. Journal of Lightwave Technology, 13, 954-960(1995).

    [16] Ghafoori-Shiraz H, Okoshi T. Fault location in optical fibers using optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 4, 316-322(1986).

    [17] Ghafoori-Shiraz H, Okoshi T. Optical-fiber diagnosis using optical-frequency-domain reflectometry[J]. Optics Letters, 10, 160-162(1985).

    [18] Amann M C. Phase noise limited resolution of coherent LIDAR using widely tunable laser diodes[J]. Electronics Letters, 28, 1694-1696(1992).

    [19] Venkatesh S, Sorin W V. Phase noise considerations in coherent optical FMCW reflectometry[J]. Journal of Lightwave Technology, 11, 1694-1700(1993).

    [20] Ebben T H, Begley D L, Marshalek R G. Phase-noise-limited accuracy of distance measurements in a frequency-modulated continuous-wave LIDAR with a tunable twin-guide laser diode[J]. Optical Engineering, 34, 896-903(1995).

    [21] Roos P A, Reibel R R, Berg T et al. Ultrabroadband optical chirp linearization for precision metrology applications[J]. Optics Letters, 34, 3692-3694(2009).

    [22] Qin J, Zhou Q, Xie W L et al. Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop[J]. Optics Letters, 40, 4500-4503(2015).

    [23] Chen J G, Liu Q W, He Z Y. Feedforward laser linewidth narrowing scheme using acousto-optic frequency shifter and direct digital synthesizer[J]. Journal of Lightwave Technology, 37, 4657-4664(2019).

    [24] Moore E D, McLeod R R. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry[J]. Optics Express, 16, 13139-13149(2008).

    [25] Yüksel K, Wuilpart M, Mégret P. Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer[J]. Optics Express, 17, 5845-5851(2009).

    [26] Fan X Y, Koshikiya Y, Ito F. Phase-noise-compensated optical frequency-domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method[J]. Optics Letters, 32, 3227-3229(2007).

    [27] Ding Z Y, Yao X S, Liu T G et al. Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter[J]. Optics Express, 21, 3826-3834(2013).

    [28] Chen D, Liu Q W, He Z Y. 108-km distributed acoustic sensor with 220-pε/√Hz strain resolution and 5-m spatial resolution[J]. Journal of Lightwave Technology, 37, 4462-4468(2019).

    [29] Dong Y K, Chen X, Liu E H et al. Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer[J]. Applied Optics, 55, 7810-7815(2016).

    [30] Masoudi A, Belal M, Newson T P. A distributed optical fibre dynamic strain sensor based on phase-OTDR[J]. Measurement Science and Technology, 24, 085204(2013).

    [31] Fang G S, Xu T W, Feng S W et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm[J]. Journal of Lightwave Technology, 33, 2811-2816(2015).

    [32] Qian H, Luo B, He H J et al. Phase demodulation based on DCM algorithm in Φ-OTDR with self-interference balance detection[J]. IEEE Photonics Technology Letters, 32, 473-476(2020).

    [33] Christopher D, John P. A sensing method employing a fibre optic sensor system[P].

    [34] Alekseev A E, Vdovenko V S, Gorshkov B G et al. Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses[J]. Quantum Electronics, 44, 965-969(2014).

    [35] He X G, Xie S R, Liu F et al. Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR[J]. Optics Letters, 42, 442-445(2017).

    [36] Lu Y L, Zhu T, Chen L et al. Distributed vibration sensor based on coherent detection of phase-OTDR[J]. Journal of Lightwave Technology, 28, 3243-3249(2010).

    [37] Pan Z Q, Liang K Z, Ye Q et al. Phase-sensitive OTDR system based on digital coherent detection[C](2011).

    [38] Wang Z N, Zhang L, Wang S et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Optics Express, 24, 853-858(2016).

    [39] Fu Y, Xue N T, Wang Z N et al. Impact of I/Q amplitude imbalance on coherent Φ-OTDR[J]. Journal of Lightwave Technology, 36, 1069-1075(2018).

    [40] Gabai H, Eyal A. On the sensitivity of distributed acoustic sensing[J]. Optics Letters, 41, 5648-5651(2016).

    [41] Chen D, Liu Q W, He Z Y. Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR[J]. Optics Express, 25, 8315-8325(2017).

    [42] Chen D, Liu Q W, He Z Y. High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution[J]. Optics Express, 26, 16138-16146(2018).

    [43] Chen D, Liu Q W, Fan X Y et al. Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio[J]. Journal of Lightwave Technology, 35, 2037-2043(2017).

    [44] He Z Y, Liu Q W, Chen D. Advances in fiber-optic distributed acoustic sensors[C](2018).

    [45] Chen D, Liu Q W, Fan X Y et al. Fading-noise-free distributed fiber-optic vibration sensor based on time-gated digital OFDR[C], W4A.2(2016).

    [46] Pan Z Q, Liang K Z, Zhou J et al. Interference-fading-free phase-demodulated OTDR system[J]. Proceedings of SPIE, 8421, 842129(2012).

    [47] Wang X, Lu B, Wang Z Y et al. Interference-fading-free Φ-OTDR based on differential phase shift pulsing technology[J]. IEEE Photonics Technology Letters, 31, 39-42(2019).

    [48] Zhou J, Pan Z Q, Ye Q et al. Phase demodulation technology using a multi-frequency source for discrimination of interference-fading induced false alarms in a φ-OTDR system[J]. Chinese Journal of Lasers, 40, 0905003(2013).

    [49] Fernández-Ruiz M R, Martins H F, Costa L et al. Statistical analysis of SNR in chirped-pulse Φ-OTDR[C], WF16(2018).

    [50] Hartog A H[M]. An introduction to distributed optical fibre sensors(2017).

    [51] Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 37, 1735-1740(1998).

    [52] Costa L, Martins H F, Martín-López S et al. Fully distributed optical fiber strain sensor with 10‒12 ε/√Hz sensitivity[J]. Journal of Lightwave Technology, 37, 4487-4495(2019).

    [53] Koyamada Y, Imahama M, Kubota K et al. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR[J]. Journal of Lightwave Technology, 27, 1142-1146(2009).

    [54] Soto M A, Lu X, Martins H F et al. Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers[J]. Optics Express, 23, 24923-24936(2015).

    [55] Liehr S, Münzenberger S, Krebber K. Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing[J]. Optics Express, 26, 10573-10588(2018).

    [56] Zhang L, Yang Z S, Gyger F et al. Rayleigh-based distributed optical fiber sensing using least mean square similarity[C], ThE29(2018).

    [57] Zhang L, Costa L D, Yang Z S et al. Analysis and reduction of large errors in Rayleigh-based distributed sensor[J]. Journal of Lightwave Technology, 37, 4710-4719(2019).

    [58] Wang Y F, Liu Q W, Chen D et al. Distributed fiber-optic dynamic-strain sensor with sub-meter spatial resolution and single-shot measurement[J]. IEEE Photonics Journal, 11, 1-8(2019).

    [59] Xiong J, Wang Z N, Wu Y et al. Single-shot COTDR using sub-chirped-pulse extraction algorithm for distributed strain sensing[J]. Journal of Lightwave Technology, 38, 2028-2036(2020).

    [60] Pastor-Graells J, Martins H F, Garcia-Ruiz A et al. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses[J]. Optics Express, 24, 13121-13133(2016).

    [61] Bhatta H D, Costa L, Garcia-Ruiz A et al. Dynamic measurements of 1000 microstrains using chirped-pulse phase-sensitive optical time-domain reflectometry[J]. Journal of Lightwave Technology, 37, 4888-4895(2019).

    [62] Chen D, Liu Q W, Wang Y F et al. Fiber-optic distributed acoustic sensor based on a chirped pulse and a non-matched filter[J]. Optics Express, 27, 29415-29424(2019).

    [63] Stewart R R. VSP: an in-depth seismic understanding[J]. CSEG Recorder, 26, 79-83(2001).

    [64] Mestayer J, Cox B, Wills P et al. Field trials of distributed acoustic sensing for geophysical monitoring[M]. SEG technical program expanded abstracts 2011, 4253-4257(2011).

    [65] Mateeva A, Lopez J, Potters H et al. Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling[J]. Geophysical Prospecting, 62, 679-692(2014).

    [66] Willis M E, Barfoot D, Ellmauthaler A et al. Quantitative quality of distributed acoustic sensing vertical seismic profile data[J]. The Leading Edge, 35, 605-609(2016).

    [67] Becker M W, Coleman T I. Distributed acoustic sensing of strain at earth tide frequencies[J]. Sensors, 19, 1975(2019).

    [68] Tejedor J, Macias-Guarasa J, Martins H F et al. Machine learning methods for pipeline surveillance systems based on distributed acoustic sensing: a review[J]. Applied Sciences, 7, 841(2017).

    [69] Zhu H, Pan C, Sun X H. Vibration pattern recognition and classification in OTDR based distributed optical-fiber vibration sensing system[J]. Proceedings of SPIE, 9062, 906205(2014).

    [70] Papp A, Wiesmeyr C, Litzenberger M et al. A real-time algorithm for train position monitoring using optical time-domain reflectometry[C], 89-93(2016).

    [71] Tejedor J, Macias-Guarasa J, Martins H F et al. Towards detection of pipeline integrity threats using a smart fiber optic surveillance system: pit-stop project blind field test results[J]. Proceedings of SPIE, 10323, 103231K(2017).

    [72] Wu H J, Xiao S K, Li X Y et al. Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry (Φ-OTDR)[J]. Journal of Lightwave Technology, 33, 3156-3162(2015).

    [73] Wang Z D, Lou S Q, Liang S et al. Multi-class disturbance events recognition based on EMD and XGBoost in φ-OTDR[J]. IEEE Access, 8, 63551-63558(2020).

    [74] Sun Q, Feng H, Yan X Y et al. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction[J]. Sensors (Basel), 15, 15179-15197(2015).

    [75] Wu H J, Chen J P, Liu X R et al. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS[J]. Journal of Lightwave Technology, 37, 4359-4366(2019).

    Zuyuan He, Qingwen Liu. Principles and Applications of Optical Fiber Distributed Acoustic Sensors[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306001
    Download Citation