• Journal of Semiconductors
  • Vol. 40, Issue 7, 070401 (2019)
Amirmahdi Honardoost, Reza Safian, Min Teng, and Leimeng Zhuang
Author Affiliations
  • imec USA, Nanoelectronics Design Center for Photonics and High-speed Electronics, 190 Neocity Way, Kissimmee, FL34744, USA
  • show less
    DOI: 10.1088/1674-4926/40/7/070401 Cite this Article
    Amirmahdi Honardoost, Reza Safian, Min Teng, Leimeng Zhuang. Ultralow-power polymer electro–optic integrated modulators[J]. Journal of Semiconductors, 2019, 40(7): 070401 Copy Citation Text show less
    References

    [1] H Subbaraman, X C Xu, A Hosseini et al. Recent advances in silicon-based passive and active optical interconnects. Opt Express, 23, 2487(2015).

    [2] J E Bowers, T Komljenovic, M Davenport et al. Recent advances in silicon photonic integrated circuits. Proc SPIE, 9774, 977402(2016).

    [3] D Thomson, A Zilkie, J E Bowers et al. Roadmap on silicon photonics. J Opt, 18, 073003(2016).

    [4] Y R Fang, M T Sun. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Sci Appl, 4, e294(2015).

    [5] A V Krasavin, A V Zayats. Active nanophotonic circuitry based on dielectric-loaded plasmonic waveguides. Adv Opt Mater, 3, 1662(2015).

    [6] N Kinsey, M Ferrera, V M Shalaev. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials Invited. J Opt Soc Am B, 32, 121(2015).

    [7] Y A Vlasov, M O’Boyle, H F Hamann et al. Active control of slow light on a chip with photonic crystal waveguides. Nature, 438, 65(2005).

    [8] W Heni, Y Kutuvantavida, C Haffner et al. Silicon-organic and plasmonic-organic hybrid photonics. ACS Photonics, 4, 1576(2017).

    [9]

    [10] T Baba, S Akiyama, M Imai et al. 50-Gb/s ring-resonator-based silicon modulator. Opt Express, 21, 11869(2013).

    [11] Y Yang, Q Fang, M B Yu et al. High-efficiency Si optical modulator using Cu travelling wave electrode. Opt Express, 22, 29978(2014).

    [12]

    [13] E L Wooten, K M Kissa, A Yi-Yan et al. A review of lithium niobate modulators for fiberoptic communications systems. IEEE J Sel Top Quantum Electron, 6, 69(2000).

    [14] A Rao, S Fathpour. Compact lithium niobate electrooptic modulators. IEEE J Sel Top Quantum Electron, 24, 1(2018).

    [15]

    [16] C Koos, J Leuthold, W Freude et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. J Lightwave Technol, 34, 256(2016).

    [17] C Haffner, W Heni, Y Fedoryshyn et al. Plasmonic organic hybrid modulators-scaling highest speed photonics to the microscale. Proc IEEE, 104, 2362(2016).

    [18] X Y Zhang, C J Chung, A Hosseini et al. High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide. J Lightwave Technol, 34, 2941(2016).

    [19] H Yan, X Xu, C J Chung et al. One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators. Opt Lett, 41, 5466(2016).

    [20] S Koeber, R Palmer, M Lauermann et al. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light: Sci Appl, 4, e255(2015).

    [21] S Wolf, A Heiner, W Hartmann et al. Silicon-organic hybrid (SOH) Mach- Zehnder Modulators for 100 Gbit/s on-off keying. Sci Rep, 8, 2598(2018).

    [22]

    [23]

    [24] J Liu, G Xu, I Kityk et al. Recent advances in polymer electro-optic modulators. RSC Adv, 5, 15784(2015).

    Amirmahdi Honardoost, Reza Safian, Min Teng, Leimeng Zhuang. Ultralow-power polymer electro–optic integrated modulators[J]. Journal of Semiconductors, 2019, 40(7): 070401
    Download Citation