• Acta Optica Sinica
  • Vol. 41, Issue 9, 0910002 (2021)
Xin Zhao1、*, Xin Wang1, and Hongkai Wang2
Author Affiliations
  • 1School of Information Engineering, Dalian University, Dalian, Liaoning 116622, China
  • 2School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
  • show less
    DOI: 10.3788/AOS202141.0910002 Cite this Article Set citation alerts
    Xin Zhao, Xin Wang, Hongkai Wang. End-to-End Segmentation of Brain White Matter Hyperintensities Combining Attention and Inception Modules[J]. Acta Optica Sinica, 2021, 41(9): 0910002 Copy Citation Text show less
    References

    [1] Gouw A A. Seewann A, van der Flier W M, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 82, 126-135(2011).

    [2] Debette S, Markus H S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis[J]. BMJ (Clinical Research Ed.), 341, c3666(2010). http://pubmedcentralcanada.ca/pmcc/articles/PMC2910261/

    [3] Hirono N, Kitagaki H, Kazui H et al. Impact of white matter changes on clinical manifestation of Alzheimer's disease: a quantitative study[J]. Stroke, 31, 2182-2188(2000).

    [4] Schoonheim M M, Vigeveno R M. Lopes F C R, et al. Sex-specific extent and severity of white matter damage in multiple sclerosis: implications for cognitive decline[J]. Human brain mapping, 35, 2348-2358(2014).

    [5] She L H, Zhong H, Zhang S. Fuzzy C-means clustering algorithm combined with Markov random field for brain MR image segmentation[J]. Journal of Image and Graphics, 17, 1554-1560(2012).

    [6] MorelB, Xu YC, VirziA, et al.A challenging issue: detection of white matter hyperintensities in neonatal brain MRI[C]∥2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), August 16-20, 2016, Orlando, FL, USA. New York: IEEE Press, 2016: 93- 96.

    [7] Bento M, de Souza R, Lotufo R et al. WMH segmentation challenge: a texture based classification approach[M]. ∥Crimi A, Bakas S, Kuijf H, et al. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Lecture notes in computer science. Canada, Springer., 10670, 489-500(2017).

    [8] Isa I, Sulaiman S N, Abdullah M F. Classification and grading of white matter hyperintensity severity by using automated detection[C]∥2017 7th IEEE International Conference on Control System, Computing and Engineering, November 24-26, 2017, Penang., 198-203(2017).

    [9] Chen Y, Guo H G, Ai Y P. Single image dehazing method based on multi-scale convolution neural network[J]. Acta Optica Sinica, 39, 1010001(2019).

    [10] Li D X, Zhang Z. Improved U-Net segmentation algorithm for the retinal blood vessel images[J]. Acta Optica Sinica, 40, 1010001(2020).

    [11] Zheng T Y, Tang C, Lei Z K. Multi-scale retinal vessel segmentation based on fully convolutional neural network[J]. Acta Optica Sinica, 39, 0211002(2019).

    [12] Andermatt S, Pezold S, Cattin P. Multi-dimensional gated recurrent units for the segmentation of biomedical 3D-data[M]. ∥Carneiro G, Mateus D, Peter L, et al. Deep learning and data labeling for medical applications. Lecture notes in computer science. Cham: Springer, 10008, 142-151(2016).

    [13] Ghafoorian M, Karssemeijer N, Heskes T et al. Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities[J]. Scientific Reports, 7, 5110(2017). http://europepmc.org/abstract/MED/28698556

    [14] Xu Y, Geraud T, Puybareau E et al. White matter hyperintensities hegmentation using fully convolutional network and transfer learning[M]. ∥Crimi A, Bakas S, Kuijf H, et al. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Lecture notes in computer science. Cham: Springer, 10670, 501-514(2017).

    [15] Rachmadi M F. Valdés-Hernández M D C, Agan M L F, et al. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology[J]. Computerized Medical Imaging and Graphics, 66, 28-43(2018).

    [16] Li H W, Jiang G F, Zhang J G et al. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images[J]. NeuroImage, 183, 650-665(2018).

    [17] Jin D K, Xu Z Y, Harrison A P et al. White matter hyperintensity segmentation from T1 and FLAIR images using fully convolutional neural networks enhanced with residual connections[C]∥2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), April 4-7, 2018, Washington, DC, USA., 1060-1064(2018).

    [18] Zhang Y, Chen W, Chen Y et al. A post-processing method to improve the white matter hyperintensity segmentation accuracy for randomly-initialized U-Net[C]∥2018 IEEE 23rd International Conference on Digital Signal Processin, November 19-21, 2018, Shanghai, China., 18418115(2018).

    [19] Li H, Zhang J, Muehlau M et al. -02-27)[2020-09-29]. https:∥arxiv.org/abs/1807.05153v1.(2019).

    [20] Jeong Y, Rachmadi M F. Valdés-Hernández M D C, et al. Dilated saliency U-Net for white matter hyperintensities segmentation using irregularity age map[J]. Frontiers in Aging Neuroscience, 11, 150(2019).

    [21] Wu J, Zhang Y, Wang K et al. Skip connection U-Net for white matter hyperintensities segmentation from MRI[J]. IEEE Access, 7, 155194-155202(2019). http://www.researchgate.net/publication/336708405_Skip_Connection_U-net_for_White_Matter_Hyperintensities_Segmentation_from_MRI

    [22] Lee A R, Woo I, Kang D W et al. Fully automated segmentation on brain ischemic and white matter hyperintensities lesions using semantic segmentation networks with squeeze-and-excitation blocks in MRI[J]. Informatics in Medicine Unlocked, 21, 100440(2020). http://www.sciencedirect.com/science/article/pii/S2352914820305906

    [23] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA., 1-9(2015).

    [24] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 770-778(2016).

    [25] Szegedy C, Ioffe S, Vanhoucke V et al. -08-23)[2020-09-29]. https:∥arxiv., org/abs/1602, 07261(2016).

    [26] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. ∥Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science. Cham: Springer, 11211, 3-19(2018).

    [27] Salehi S S M, Erdogmus D, Gholipour A. Tversky loss function for image segmentation using 3D fully convolutional deep networks. [C]∥Wang Q, Shi Y, Suk H I, et al. Machine learning in medical imaging. Lecture notes in computer science. Cham: Springer, 10541, 379-387(2017).

    Xin Zhao, Xin Wang, Hongkai Wang. End-to-End Segmentation of Brain White Matter Hyperintensities Combining Attention and Inception Modules[J]. Acta Optica Sinica, 2021, 41(9): 0910002
    Download Citation