• Photonics Research
  • Vol. 11, Issue 1, 35 (2023)
Qiang Wu1, Lei Gao1、4、*, Yulong Cao1, Stefan Wabnitz2、3, Zhenghu Chang1, Ai Liu1, Jingsheng Huang1, Ligang Huang1, and Tao Zhu1、5、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
  • 2Dipartimento di Ingegneria dell’Informazione, Elettronica e Telecomunicazioni, Sapienza Università di Roma, 00184 Roma, Italy
  • 3CNR-INO, Istituto Nazionale di Ottica, 80078 Pozzuoli (NA), Italy
  • 4e-mail: gaolei@cqu.edu.cn
  • 5e-mail: zhutao@cqu.edu.cn
  • show less
    DOI: 10.1364/PRJ.471291 Cite this Article Set citation alerts
    Qiang Wu, Lei Gao, Yulong Cao, Stefan Wabnitz, Zhenghu Chang, Ai Liu, Jingsheng Huang, Ligang Huang, Tao Zhu. Single-shot measurement of wavelength-resolved state of polarization dynamics in ultrafast lasers using dispersed division-of-amplitude[J]. Photonics Research, 2023, 11(1): 35 Copy Citation Text show less
    References

    [1] D. Y. Tang, H. Zhang, L. M. Zhao, X. Wu. Observation of high-order polarization-locked vector solitons in a fiber laser. Phys. Rev. Lett., 101, 153904(2008).

    [2] C. Mou, S. Sergeyev, A. Rozhin, S. Turistyn. All-fiber polarization locked vector soliton laser using carbon nanotubes. Opt. Lett., 36, 3831-3833(2011).

    [3] M. Liu, A. P. Luo, Z. C. Luo, W. C. Xu. Dynamic trapping of a polarization rotation vector soliton in a fiber laser. Opt. Lett., 42, 330-333(2017).

    [4] W. Du, H. Li, J. Li, Z. Wang, Z. Zhang, S. Zhang, Y. Liu. Vector dynamics of pulsating solitons in an ultrafast fiber laser. Opt. Lett., 45, 5024-5027(2020).

    [5] T. J. Li, M. Liu, A. P. Luo, Z. C. Luo, W. C. Xu. Vector features of pulsating soliton in an ultrafast fiber laser. Opt. Express, 28, 32010-32018(2020).

    [6] K. Zhao, C. Gao, X. Xiao, C. Yang. Real-time collision dynamics of vector solitons in a fiber laser. Photon. Res., 9, 289-298(2021).

    [7] H. Zhang, D. Tang, L. Zhao, Q. Bao, K. P. Loh. Vector dissipative solitons in graphene mode locked fiber lasers. Opt. Commun., 283, 3334-3338(2010).

    [8] K. Krupa, K. Nithyanandan, P. Grelu. Vector dynamics of incoherent dissipative optical solitons. Optica, 4, 1239-1244(2017).

    [9] Y. Luo, J. Cheng, B. Liu, Q. Sun, L. Li, S. Fu, D. Liu. Group-velocity-locked vector soliton molecules in fiber lasers. Sci. Rep., 7, 2369(2017).

    [10] Y. Song, Z. Liang, H. Zhang, Q. Zhang, L. Zhao, D. Shen, D. Tang. Period-doubling and quadrupling bifurcation of vector soliton bunches in a graphene mode locked fiber laser. IEEE Photon. J., 9, 4502308(2017).

    [11] F. Lu, Q. Lin, W. H. Knox, G. P. Agrawal. Vector soliton fission. Phys. Rev. Lett., 93, 183901(2004).

    [12] L. Gao, Y. Cao, S. Wabnitz, H. Ran, L. Kong, Y. Li, T. Zhu. Polarization evolution dynamics of dissipative soliton fiber lasers. Photon. Res., 7, 1331-1339(2019).

    [13] L. Gao, L. Kong, Y. Cao, S. Wabnitz, H. Ran, Y. Li, T. Zhu. Optical polarization rogue waves from supercontinuum generation in zero dispersion fiber pumped by dissipative soliton. Opt. Express, 27, 23830-23838(2019).

    [14] Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J. P. Maria, I. Brener. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photonics, 11, 390-395(2017).

    [15] Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Zhang. Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments. Nat. Photonics, 12, 554-559(2018).

    [16] T. Brixner, G. Gerber. Femtosecond polarization pulse shaping. Opt. Lett., 26, 557-559(2001).

    [17] F. Fraggelakis, E. Stratakis, P. A. Loukakos. Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses. Appl. Surf. Sci., 444, 154-160(2018).

    [18] T. Novikova, A. Pierangelo, A. De Martino, A. Benali, P. Validire. Polarimetric imaging for cancer diagnosis and staging. Opt. Photon. News, 23, 26-33(2012).

    [19] N. Ghosh, A. I. Vitkin. Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt., 16, 110801(2011).

    [20] S. L. Jacques. Optical properties of biological tissues: a review. Phys. Med. Biol., 58, R37(2013).

    [21] Y. Zhao, L. Zhang, Q. Pan. Spectropolarimetric imaging for pathological analysis of skin. Appl. Opt., 48, D236-D246(2009).

    [22] H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, H. Ma. Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging. J. Biomed. Opt., 19, 106007(2014).

    [23] M. Garcia, C. Edmiston, R. Marinov, A. Vail, V. Gruev. Bio-inspired color-polarization imager for real-time in situ imaging. Optica, 4, 1263-1271(2017).

    [24] A. Taniguchi, K. Oka, H. Okabe, M. Hayakawa. Stabilization of a channeled spectropolarimeter by self-calibration. Opt. Lett., 31, 3279-3281(2006).

    [25] T. Kihara. Measurement of Stokes parameters by quarter-wave plate and polarizer. Appl. Mech. Mater., 3, 235-242(2005).

    [26] B. Schaefer, E. Collett, R. Smyth, D. Barrett, B. Fraher. Measuring the Stokes polarization parameters. Am. J. Phys., 75, 163-168(2007).

    [27] R. M. A. Azzam. Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light. Opt. Acta, 29, 685-689(1982).

    [28] R. M. A. Azzam. Beam-splitters for the division-of-amplitude photopolarimeter. Opt. Acta, 32, 1407-1412(1985).

    [29] A. M. El-Saba, R. M. A. Azzam, M. A. G. Abushagur. Parallel-slab division-of-amplitude photopolarimeter. Opt. Lett., 21, 1709-1711(1996).

    [30] S. Krishnan, S. Hampton, J. Rix, B. Taylor, R. M. A. Azzam. Spectral polarization measurements by use of the grating division-of-amplitude photopolarimeter. Appl. Opt., 42, 1216-1227(2003).

    [31] S. Krishnan. Calibration, properties, and applications of the division-of-amplitude photopolarimeter at 632.8 and 1523 nm. J. Opt. Soc. Am. A, 9, 1615-1622(1992).

    [32] K. Goda, B. Jalali. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics, 7, 102-112(2013).

    [33] P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, J. M. Dudley. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photonics, 12, 221-227(2018).

    [34] J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, H. Zeng. Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers. Commun. Phys., 1, 20(2018).

    [35] H. J. Chen, M. Liu, J. Yao, S. Hu, J. B. He, A. P. Luo, Z. C. Luo. Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion. Opt. Express, 26, 2972-2982(2018).

    [36] C. Lapre, C. Billet, F. Meng, G. Genty, J. M. Dudley. Dispersive Fourier transform characterization of multipulse dissipative soliton complexes in a mode-locked soliton-similariton laser. OSA Contin., 3, 275-285(2020).

    [37] X. Wang, J. He, H. Shi, B. Mao, M. Feng, Z. Wang, Y. G. Liu. Real-time observation of multi-soliton asynchronous pulsations in an L-band dissipative soliton fiber laser. Opt. Lett., 45, 4782-4785(2020).

    [38] J. Peng, H. Zeng. Experimental observations of breathing dissipative soliton explosions. Phys. Rev. Appl., 12, 034052(2019).

    [39] K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, P. Grelu. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett., 118, 243901(2017).

    [40] X. Liu, D. Popa, N. Akhmediev. Revealing the transition dynamics from Q switching to mode locking in a soliton laser. Phys. Rev. Lett., 123, 093901(2019).

    [41] X. Liu, X. Yao, Y. Cui. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett., 121, 023905(2018).

    [42] G. Herink, B. Jalali, C. Ropers, D. R. Solli. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photonics, 10, 321-326(2016).

    [43] C. Lapre, C. Billet, F. Meng, P. Ryczkowski, T. Sylvestre, C. Finot, G. Genty, J. M. Dudley. Real-time characterization of spectral instabilities in a mode-locked fibre laser exhibiting soliton-similariton dynamics. Sci. Rep., 9, 13950(2019).

    [44] P. Grelu, N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics, 6, 84-92(2012).

    [45] D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, H. Lu. Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser. Laser Phys. Lett., 8, 134-138(2010).

    [46] K. Hingerl, R. Ossikovski. General approach for modeling partial coherence in spectroscopic Mueller matrix polarimetry. Opt. Lett., 41, 219-222(2016).

    [47] M. Miranda-Medina, E. Garcia-Caurel, A. Peinado, M. Stchakovsky, K. Hingerl, R. Ossikovski. Experimental validation of the partial coherence model in spectroscopic ellipsometry and Mueller matrix polarimetry. Appl. Surf. Sci., 421, 656-662(2017).

    Qiang Wu, Lei Gao, Yulong Cao, Stefan Wabnitz, Zhenghu Chang, Ai Liu, Jingsheng Huang, Ligang Huang, Tao Zhu. Single-shot measurement of wavelength-resolved state of polarization dynamics in ultrafast lasers using dispersed division-of-amplitude[J]. Photonics Research, 2023, 11(1): 35
    Download Citation