• Acta Optica Sinica
  • Vol. 37, Issue 6, 623001 (2017)
Wang Haoshen*, Han Kui, Sun Wei, Li Haipeng, Wang Weihua, Fu Wenyue, and Shen Xiaopeng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201737.0623001 Cite this Article Set citation alerts
    Wang Haoshen, Han Kui, Sun Wei, Li Haipeng, Wang Weihua, Fu Wenyue, Shen Xiaopeng. Design and Experimental Investigation of Triple-Band Metamaterial Broadband Bandpass Filter[J]. Acta Optica Sinica, 2017, 37(6): 623001 Copy Citation Text show less
    References

    [1] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782.

    [2] Mei Z L, Bai J, Cui T J. Gradient index metamaterials realized by drilling hole arrays[J]. Journal of Physics D: Applied Physics, 2010, 43(5): 055404.

    [3] Jin B B, Wu J B, Zhang C H, et al. Enhanced slow light in superconducting electromagnetically induced transparency metamaterials[J]. Superconductor Science and Technology, 2013, 26(7): 074004.

    [4] Xu W, Sonkusale S. Microwave diode switchable metamaterial reflector/absorber[J]. Applied Physics Letters, 2013, 103(3): 031902.

    [5] Han Hao, Wu Dongwei, Liu Jianjun, et al. A terahertz metamaterial analog of electromagnetically induced transparency[J]. Acta Optica Sinica, 2014, 34(4): 423003.

    [6] Yang F, Mei Z L, Jin T Y, et al. DC electric invisibility cloak[J]. Physical Review Letters, 2012, 109(5): 053902.

    [7] Huang L, Chowdhury D R, Ramani S, et al. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J]. Optics Letters, 2012, 37(2): 154-156.

    [8] Shen Xiaopeng, Cui Tiejun, Ye Jianxiang. Dual band metamaterial absorber in microwave regime[J]. Acta Physica Sinica, 2012, 61(5): 058101.

    [9] Sun Yaru, Shi Tonglu, Liu Jianjun, et al. Terahertz label-free bio-sensing with EIT-like metamaterials[J]. Acta Optica Sinica, 2016, 36(3): 328001.

    [10] Fu W, Han Y, Li J, et al. Polarization insensitive wide-angle triple-band metamaterial bandpass filter[J]. Journal of Physics D: Applied Physics, 2016, 49(28): 285110.

    [11] Zhu Y, Vegesna S, Zhao Y, et al. Tunable dual-band terahertz metamaterial bandpass filters[J]. Optics Letters, 2013, 38(14): 2382-2384.

    [12] Lan F, Yang Z, Qi L, et al. Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures[J]. Optics Letters, 2014, 39(7): 1709-1712.

    [13] Han B, Dong B, Nan J, et al. Tunable bandwidth of pass-band metamaterial filter based on coupling of localized surface plasmon resonance[J]. Optical Materials, 2015, 50: 162-166.

    [14] Khodaee M, Banakermani M, Baghban H. GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment[J]. Applied Optics, 2015, 54(29): 8617-8624.

    [15] Liang L, Jin B, Wu J, et al. A flexible wideband bandpass terahertz filter using multi-layer metamaterials[J]. Applied Physics B, 2013, 113(2): 285-290.

    [16] Zhou X, Yin X, Zhang T, et al. Ultrabroad terahertz bandpass filter by hyperbolic metamaterial waveguide[J]. Optics Express, 2015, 23(9): 11657-11664.

    [17] Han J G, Gu J Q, Lu X C, et al. Broadband resonant terahertz transmission in a composite metal-dielectric structure[J]. Optics Express, 2009, 17(19): 16527-16534.

    [18] Yeh T T, Genovesi S, Monorchio A, et al. Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials[J]. Optics Express, 2012, 20(7): 7580-7589.

    [19] Turkmen O, Ekmekci E, Turhan-Sayan G. Nested U-ring resonators: a novel multi-band metamaterial design in microwave region[J]. IET Microwaves, Antennas & Propagation, 2012, 6(10): 1102-1108.

    [20] Bai Z Y, Zhang Q, Ju Y F, et al. Flexible metamaterial narrow-band-pass filter based on magnetic resonance coupling between ultra-thin bilayer frequency selective surfaces[J]. Journal of Physics D: Applied Physics, 2016, 49(6): 065002.

    [21] Papasimakis N, Fedotov V A, Zheludev N I. Metamaterial analog of electromagnetically induced transparency[J]. Physical Review Letters, 2008, 101(25): 253903.

    [22] Fedotov V A, Rose M, Prosvirnin S L, et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Physical Review Letters, 2007, 99(14): 147401.

    Wang Haoshen, Han Kui, Sun Wei, Li Haipeng, Wang Weihua, Fu Wenyue, Shen Xiaopeng. Design and Experimental Investigation of Triple-Band Metamaterial Broadband Bandpass Filter[J]. Acta Optica Sinica, 2017, 37(6): 623001
    Download Citation