• Matter and Radiation at Extremes
  • Vol. 6, Issue 6, 068403 (2021)
Qingyang Hua) and Ho-kwang Mao
Author Affiliations
  • Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
  • show less
    DOI: 10.1063/5.0069479 Cite this Article
    Qingyang Hu, Ho-kwang Mao. Born’s valence force-field model for diamond at terapascals: Validity and implications for the primary pressure scale[J]. Matter and Radiation at Extremes, 2021, 6(6): 068403 Copy Citation Text show less
    References

    [1] M.Born, T.von Kármán. Über schwingungen in raumgittern. Phys. Z., 13, 297(1912).

    [2] P. N.Keating. Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev., 145, 637-645(1966).

    [3] M.Grimsditch, A. K.Ramdas, T. R.Anthony, R.Vogelgesang, S.Rodriguez. Brillouin and Raman scattering in natural and isotopically controlled diamond. Phys. Rev. B, 54, 3989-3999(1996).

    [4] V. E.Bean et al. Another step toward an international practical pressure scale: 2nd AIRAPT IPPS task group report. Physica B+C, 139–140, 52-54(1986).

    [5] G.Shen et al. Toward an international practical pressure scale: A proposal for an IPPS ruby gauge (IPPS-Ruby2020). High Press. Res., 40, 299-314(2020).

    [6] D. E.Fratanduono et al. Establishing gold and platinum standards to 1 terapascal using shockless compression. Science, 372, 1063(2021).

    [7] C.-S.Zha, H.-k.Mao, R. J.Hemley. Elasticity of MgO and a primary pressure scale to 55 GPa. Proc. Natl. Acad. Sci. U. S. A., 97, 13494(2000).

    [8] M.Murakami, N.Takata. Absolute primary pressure scale to 120 GPa: Toward a pressure benchmark for Earth’s lower mantle. J. Geophys. Res.: Solid Earth, 124, 6581-6588(2019).

    [9] F.Soubiran, B.Militzer. Anharmonicity and phase diagram of magnesium oxide in the megabar regime. Phys. Rev. Lett., 125, 175701(2020).

    [10] K. P.Esler et al. Fundamental high-pressure calibration from all-electron quantum Monte Carlo calculations. Phys. Rev. Lett., 104, 185702(2010).

    [11] P.Dera, K. K.Zhuravlev, S. N.Tkachev, A. F.Goncharov, V. B.Prakapenka. Vibrational, elastic, and structural properties of cubic silicon carbide under pressure up to 75 GPa: Implication for a primary pressure scale. J. Appl. Phys., 113, 113503(2013).

    [12] S.Zhang et al. Discovery of carbon-based strongest and hardest amorphous material. Natl. Sci. Rev.(2021).

    [13] H.Sun, C.Chen, Z.Pan, Y.Zhang. Harder than diamond: Superior indentation strength of wurtzite BN and lonsdaleite. Phys. Rev. Lett., 102, 055503(2009).

    [14] G.Galli, S. A.Bonev, A. A.Correa. Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory. Proc. Natl. Acad. Sci. U. S. A., 103, 1204-1208(2006).

    [15] G.Kresse, D.Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758-1775(1999).

    [16] J.Furthmüller, G.Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169-11186(1996).

    [17] J. P.Perdew et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett., 100, 136406(2008).

    [18] J. P.Perdew, Y.Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 45, 13244-13249(1992).

    [19] D. M.Ceperley, B. J.Alder. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45, 566-569(1980).

    [20] P.Saxe, Y.Le Page. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B, 65, 104104(2002).

    [21] R.Hill. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., Sect. A, 65, 349-354(1952).

    [22] T. H. K.Barron, M. L.Klein. Second-order elastic constants of a solid under stress. Proc. Phys. Soc., 85, 523-532(1965).

    [23] S. C.Parker, P.Tschaufeser, A.Wall, R. A.Jackson, C. R. A.Catlow, G. W.Watson. Computer Modeling in Inorganic Crystallography, 55-81(1997).

    [24] S.-H.Yoo et al. Finite-size correction for slab supercell calculations of materials with spontaneous polarization. npj Comput. Mater., 7, 58(2021).

    [25] R.LeToullec, P.Loubeyre, F.Occelli. Properties of diamond under hydrostatic pressures up to 140 GPa. Nat. Mater., 2, 151-154(2003).

    [26] P.Andreatch, H. J.McSkimin. Elastic moduli of diamond as a function of pressure and temperature. J. Appl. Phys., 43, 2944-2948(1972).

    [27] W. B.Holzapfel, J. S.Tse. Equation of state for diamond in wide ranges of pressure and temperature. J. Appl. Phys., 104, 043525(2008).

    [28] V.Coropceanu, Y.Yi, J.-L.Brédas. Nonlocal electron–phonon coupling in the pentacene crystal: Beyond the Γ-point approximation. J. Chem. Phys., 137, 164303(2012).

    [29] Y.Akahama, H.Kawamura. Pressure calibration of diamond anvil Raman gauge to 410 GPa. J. Phys.: Conf. Ser., 215, 012195(2010).

    [30] N.Dubrovinskaia, M.Hanfland, L.Dubrovinsky, R.Caracas. Diamond as a high pressure gauge up to 2.7 Mbar. Appl. Phys. Lett., 97, 251903(2010).

    [31] B.Li et al. Diamond anvil cell behavior up to 4 Mbar. Proc. Natl. Acad. Sci. U. S. A., 115, 1713(2018).

    [32] Y.Fei et al. Toward an internally consistent pressure scale. Proc. Natl. Acad. Sci. U. S. A., 104, 9182-9186(2007).

    [33] D.Ikuta et al. Large density deficit of Earth’s core revealed by a multi-megabar primary pressure scale(2021).

    [34] L.Dubrovinsky et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature, 525, 226-229(2015).

    [35] M.Hou et al. Superionic iron oxide–hydroxide in Earth’s deep mantle. Nat. Geosci., 14, 174-178(2021).

    [36] Q.Hu et al. Mineralogy of the deep lower mantle in the presence of H2O. Natl. Sci. Rev., 8, nwaa098(2021).

    [37] M.Somayazulu et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 122, 027001(2019).

    [38] Y.Xie, Y.Ma, J.Lv, H.Liu, Y.Sun. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett., 123, 097001(2019).

    [39] P.Dumas, F.Occelli, P.Loubeyre. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature, 577, 631-635(2020).

    [40] S.Tateno, K.Hirose, Y.Tatsumi, Y.Ohishi. The structure of iron in Earth’s inner core. Science, 330, 359(2010).

    [41] J.Badro, A. S.C?té, J. P.Brodholt. A seismologically consistent compositional model of Earth’s core. Proc. Natl. Acad. Sci. U. S. A., 111, 7542(2014).

    Qingyang Hu, Ho-kwang Mao. Born’s valence force-field model for diamond at terapascals: Validity and implications for the primary pressure scale[J]. Matter and Radiation at Extremes, 2021, 6(6): 068403
    Download Citation