• Photonics Research
  • Vol. 1, Issue 3, 102 (2013)
P. Boucaud1,*, M. El Kurdi1, A. Ghrib1, M. Prost2..., M. de Kersauson1, S. Sauvage1, F. Aniel1, X. Checoury1, G. Beaudoin3, L. Largeau3, I. Sagnes3, G. Ndong4, M. Chaigneau4 and R. Ossikovski4|Show fewer author(s)
Author Affiliations
  • 1Institut d’Electronique Fondamentale, CNRS—Univ. Paris Sud 11, Batiment 220, F-91405 Orsay, France
  • 2Institut d’Electronique Fondamentale, CNRS—Univ. Paris Sud 11, Batiment 220, F-91405 Orsay, France
  • 3Laboratoire de Photonique et de Nanostructures, CNRS—UPR 20, Route de Nozay 91460 Marcoussis, France
  • 4Laboratoire de Physique des Interfaces et des Couches Minces, CNRS—Ecole polytechnique, F-91128 Palaiseau, France
  • show less
    DOI: 10.1364/PRJ.1.000102 Cite this Article Set citation alerts
    P. Boucaud, M. El Kurdi, A. Ghrib, M. Prost, M. de Kersauson, S. Sauvage, F. Aniel, X. Checoury, G. Beaudoin, L. Largeau, I. Sagnes, G. Ndong, M. Chaigneau, R. Ossikovski, "Recent advances in germanium emission [Invited]," Photonics Res. 1, 102 (2013) Copy Citation Text show less
    References

    [1] J. R. Haynes. New radiation resulting from recombination of holes and electrons in germanium. Phys. Rev., 98, 1866-1868(1955).

    [2] Y. P. Varshni. Band-to-band radiative recombination in groups IV, VI and III–V semiconductors (I). Phys. Status Solidi B, 19, 459-514(1967).

    [3] G. A. Thomas, E. I. Blount, M. Capizzi. Indirect recombination mechanisms in germanium. Phys. Rev. B, 19, 702-718(1979).

    [4] W. Klingenstein, H. Schweizer. Direct gap recombination in germanium at high excitation level and low temperature. Solid-State Electron., 21, 1371-1374(1978).

    [5] G. Masini, L. Colace, G. Assanto. 2.5 Gbit/s polycrystalline germanium-on-silicon photodetector operating from 1.3 to 1.55 μm. Appl. Phys. Lett., 82, 2524-2526(2003).

    [6] G. Dehlinger, S. Koester, J. Schaub, J. Chu, Q. Ouyang, A. Grill. High-speed germanium-on-SOI lateral PIN photodiodes. IEEE Photon. Technol. Lett., 16, 2547-2549(2004).

    [7] Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, J. C. Campbell. Monolithic germanium//silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat. Photonics, 3, 59-63(2009).

    [8] M. A. Green, J. Zhao, A. Wang, P. J. Reece, M. Gal. Efficient silicon light-emitting diodes. Nature, 412, 805-808(2001).

    [9] C.-Y. Tsai. Theoretical model for the optical gain coefficient of indirect-band-gap semiconductors. J. Appl. Phys., 99, 053506(2006).

    [10] M. V. Fischetti, S. E. Laux. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys., 80, 2234-2252(1996).

    [11] J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, J. Michel. Ge-on-Si laser operating at room temperature. Opt. Lett., 35, 679-681(2010).

    [12] R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel. An electrically pumped germanium laser. Opt. Express, 20, 11316-11320(2012).

    [13] J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, J. Michel. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt. Express, 15, 11272-11277(2007).

    [14] S.-W. Chang, S. L. Chuang. Theory of optical gain of Ge-SixGeySn1−xy quantum-well lasers. IEEE J. Quantum Electron., 43, 249-256(2007).

    [15] G. Pizzi, M. Virgilio, G. Grosso. Tight-binding calculation of optical gain in tensile strained 001.-Ge/SiGe quantum wells. Nanotechnology, 21, 055202(2010).

    [16] M. El Kurdi, G. Fishman, S. Sauvage, P. Boucaud. Band structure and optical gain of tensile-strained germanium based on a 30 band k·p formalism. J. Appl. Phys., 107, 013710(2010).

    [17] B. Dutt, D. Sukhdeo, D. Nam, B. Vulovic, Z. Yuan, K. Saraswat. Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping. IEEE Photon. J., 4, 2002-2009(2012).

    [18] G.-E. Chang, H. H. Cheng. Optical gain of germanium infrared lasers on different crystal orientations. J. Phys. D, 46, 065103(2013).

    [19] J. Liu, L. C. Kimerling, J. Michel. Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration. Semicond. Sci. Technol., 27, 094006(2012).

    [20] L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, J. Faist. Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain. Phys. Rev. Lett., 109, 057402(2012).

    [21] X. Sun, J. Liu, L. C. Kimerling, J. Michel. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si. Appl. Phys. Lett., 95, 011911(2009).

    [22] M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Debarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, D. Bensahel. Enhanced photoluminescence of heavily n-doped germanium. Appl. Phys. Lett., 94, 191107(2009).

    [23] E. Gaubas, J. Vanhellemont. Dependence of carrier lifetime in germanium on resisitivity and carrier injection level. Appl. Phys. Lett., 89, 142106(2006).

    [24] E. Gaubas, J. Vanhellemont. Comparative study of carrier lifetime dependence on dopant concentration in silicon and germanium. J. Electrochem. Soc., 154, H231-H238(2007).

    [25] W. G. Spitzer, F. A. Trumbore, R. A. Logan. Properties of heavily doped n-type germanium. J. Appl. Phys., 32, 1822-1830(1961).

    [26] J. I. Pankove, P. Aigrain. Optical absorption of arsenic-doped degenerate germanium. Phys. Rev., 126, 956-962(1962).

    [27] C. Haas. Infrared absorption in heavily doped n-type germanium. Phys. Rev., 125, 1965-1971(1962).

    [28] R. Newman, W. W. Tyler. Effect of impurities on free-hole infrared absorption in p-type germanium. Phys. Rev., 105, 885-886(1957).

    [29] G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, J. Menendez. Direct versus indirect optical recombination in Ge films grown on Si substrates. Phys. Rev. B, 84, 205307(2011).

    [30] X. Wang, H. Li, R. Camacho-Aguilera, Y. Cai, L. C. Kimerling, J. Michel, J. Liu. Infrared absorption of n-type tensile-strained Ge-on-Si. Opt. Lett., 38, 652-654(2013).

    [31] R. Jakomin, M. de Kersauson, M. El Kurdi, L. Largeau, O. Mauguin, G. Beaudoin, S. Sauvage, R. Ossikovski, G. Ndong, M. Chaigneau, I. Sagnes, P. Boucaud. High quality tensile-strained n-doped germanium thin films grown on InGaAs buffer layers by metal-organic chemical vapor deposition. Appl. Phys. Lett., 98, 091901(2011).

    [32] C.-Y. Tsai, C.-Y. Tsai, C.-H. Chen, T.-L. Sung, T.-Y. Wu, F.-P. Shih. Theoretical model for intravalley and intervalley free-carrier absorption in semiconductor lasers: beyond the classical Drude model. IEEE J. Quantum Electron., 34, 552-559(1998).

    [33] Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, L. C. Kimerling. Strain-induced bandgap shrinkage in Ge grown on Si substrate. Appl. Phys. Lett., 82, 2044-2046(2003).

    [34] J. Menendez, J. Kouvetakis. Type-I Ge/Ge1−xySixSny strained-layer heterostructures with a direct Ge bandgap. Appl. Phys. Lett., 85, 1175-1177(2004).

    [35] Y.-Y. Fang, J. Tolle, R. Roucka, A. V. G. Chizmeshya, J. Kouvetakis, V. R. D. Costa, J. Menendez. Perfectly tetragonal, tensile-strained Ge on Ge1−ySny buffered Si (100). Appl. Phys. Lett., 90, 061915(2007).

    [36] H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, J. S. Harris. Structural and optical characterization of SixGe1−xySny alloys grown by molecular beam epitaxy. Appl. Phys. Lett., 100, 141908(2012).

    [37] S. Gupta, B. Magyari-Kope, Y. Nishi, K. C. Saraswat. Achieving direct band gap in germanium through integration of Sn alloying and external strain. J. Appl. Phys., 113, 073707(2013).

    [38] B. Dutt, H. Lin, D. S. Sukhdeo, B. M. Vulovic, S. Gupta, D. Nam, K. C. Saraswat, J. S. Harris. Theoretical analysis of GeSn alloys as a gain medium for a Si-compatible laser. IEEE J. Sel. Top. Quantum Electron., 19, 1502706(2013).

    [39] Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, E. A. Fitzgerald. Growth of highly tensile-strained Ge on relaxed InxGa1−xAs by metal-organic chemical vapor deposition. J. Appl. Phys., 104, 084518(2008).

    [40] Y. Hoshina, A. Yamada, M. Konagai. Growth and characterization of highly tensile-strained Ge on InxGa1−xAs virtual substrate by solid source molecular beam epitaxy. Jpn. J. Appl. Phys., 48, 111102(2009).

    [41] Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, J. S. Harris. Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy. Appl. Phys. Lett., 98, 011111(2011).

    [42] J. R. Sanchez-Perez, C. Boztug, F. Chen, F. F. Sudradjat, D. M. Paskiewicz, R. Jacobson, M. G. Lagally, R. Paiella. Direct-bandgap light-emitting germanium in tensilely strained nanomembranes. Proc. Natl. Acad. Sci. U.S.A., 108, 18893-18898(2011).

    [43] M. de Kersauson, M. Prost, A. Ghrib, M. El Kurdi, S. Sauvage, L. Largeau, G. Beaudoin, O. Mauguin, R. Jakomin, I. Sagnes, G. Ndong, M. Chaigneau, R. Ossikovski, P. Boucaud. Effect of increasing thickness on tensile-strained germanium grown on InGaAs buffer layers. J. Appl. Phys., 113, 183508(2013).

    [44] P. H. Lim, S. Park, Y. Ishikawa, K. Wada. Enhanced direct bandgap emission in germanium by micromechanical strain engineering. Opt. Express, 17, 16358-16365(2009).

    [45] A. Ghrib, M. El Kurdi, M. de Kersauson, M. Prost, S. Sauvage, X. Checoury, G. Beaudoin, I. Sagnes, P. Boucaud. Tensile-strained germanium microdisks. Appl. Phys. Lett., 102, 221112(2013).

    [46] M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, P. Boucaud. Control of direct band gap emission of bulk germanium by mechanical tensile strain. Appl. Phys. Lett., 96, 041909(2010).

    [47] D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. C.-Y. Huang, M. Brongersma, Y. Nishi, K. Saraswat. Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser. Appl. Phys. Lett., 100, 131112(2012).

    [48] C. Boztug, J. R. Sachez-Peez, F. F. Sudradjat, R. Jacobson, D. M. Paskiewicz, M. G. Lagally, R. Paiella. Tensilely strained germanium nanomembranes as infrared optical gain media. Small, 9, 622-630(2013).

    [49] D. Nam, D. Sukhdeo, A. Roy, K. Balram, S.-L. Cheng, K. C.-Y. Huang, Z. Yuan, M. Brongersma, Y. Nishi, D. Miller, K. Saraswat. Strained germanium thin film membrane on silicon substrate for optoelectronics. Opt. Express, 19, 25866-25872(2011).

    [50] M. de Kersauson, M. El Kurdi, S. David, X. Checoury, G. Fishman, S. Sauvage, R. Jakomin, G. Beaudoin, I. Sagnes, P. Boucaud. Optical gain in single tensile-strained germanium photonic wire. Opt. Express, 19, 17925-17934(2011).

    [51] A. Ghrib, M. de Kersauson, M. El Kurdi, R. Jakomin, G. Beaudoin, S. Sauvage, G. Fishman, G. Ndong, M. Chaigneau, R. Ossikovski, I. Sagnes, P. Boucaud. Control of tensile strain in germanium waveguides through silicon nitride layers. Appl. Phys. Lett., 100, 201104(2012).

    [52] G. Capellini, G. Kozlowski, Y. Yamamoto, M. Lisker, C. Wenger, G. Niu, P. Zaumseil, B. Tillack, A. Ghrib, M. de Kersauson, M. El Kurdi, P. Boucaud, T. Schroeder. Strain analysis in SiN/Ge microstructures obtained via Si-complementary metal oxide semiconductor compatible approach. J. Appl. Phys., 113, 013513(2013).

    [53] G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, J. Vuckovic. Direct band Ge photoluminescence near 1.6 μm coupled to Ge-on-Si microdisk resonators. Appl. Phys. Lett., 97, 241102(2010).

    [54] J. S. Xia, Y. Ikegami, K. Nemoto, Y. Shiraki. Observation of whispering-gallery modes in Si microdisks at room temperature. Appl. Phys. Lett., 90, 141102(2007).

    [55] R. Ossikovski, G. Picardi, G. Ndong, M. Chaigneau. Raman spectroscopy and polarization: selected case studies. C. R. Phys., 13, 837-852(2012).

    [56] M. El Kurdi, M. de Kersauson, A. Ghrib, M. Prost, S. Sauvage, R. Jakomin, G. Beaudoin, O. Mauguin, L. Largeau, I. Sagnes, G. Ndong, M. Chaigneau, R. Ossikovski, P. Boucaud. (Invited) Strain engineering for optical gain in germanium. ECS Trans., 50, 363-370(2013).

    [57] P. Boucaud, M. El Kurdi, S. Sauvage, M. de Kersauson, A. Ghrib, X. Checoury. Light emission from strained germanium. Nat. Photonics, 7, 162-162(2013).

    [58] X. Sun, J. Liu, L. C. Kimerling, J. Michel. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. Opt. Lett., 34, 1198-1200(2009).

    [59] S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, Y. Nishi. Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate. Opt. Express, 17, 10019-10024(2009).

    [60] M. de Kersauson, R. Jakomin, M. El Kurdi, G. Beaudoin, N. Zerounian, F. Aniel, S. Sauvage, I. Sagnes, P. Boucaud. Direct and indirect band gap room temperature electroluminescence of Ge diodes. J. Appl. Phys., 108, 023105(2010).

    [61] T.-H. Cheng, C.-Y. Ko, C.-Y. Chen, K.-L. Peng, G.-L. Luo, C. W. Liu, H.-H. Tseng. Competitiveness between direct and indirect radiative transitions of Ge. Appl. Phys. Lett., 96, 091105(2010).

    [62] S.-L. Cheng, G. Shambat, J. Lu, H.-Y. Yu, K. Saraswat, T. I. Kamins, J. Vuckovic, Y. Nishi. Cavity-enhanced direct band electroluminescence near 1550 nm from germanium microdisk resonator diode on silicon. Appl. Phys. Lett., 98, 211101(2011).

    [63] M. Oehme, M. Gollhofer, D. Widmann, M. Schmid, M. Kaschel, E. Kasper, J. Schulze. Direct bandgap narrowing in Ge LEDs on Si substrates. Opt. Express, 21, 2206-2211(2013).

    [64] P. Velha, K. F. Gallacher, D. C. Dumas, D. J. Paul, M. Myronov, D. R. Leadley. Direct band-gap electroluminescence from strained n-Ge light emitting diodes. ECS Trans., 50, 305-308(2013).

    CLP Journals

    [1] David S. Sukhdeo, Donguk Nam, Ju-Hyung Kang, Mark L. Brongersma, and Krishna C. Saraswat, "Direct bandgap germanium-on-silicon inferred from 5.7% <100> uniaxial tensile strain [Invited]," Photonics Res. 2, A8 (2014)

    P. Boucaud, M. El Kurdi, A. Ghrib, M. Prost, M. de Kersauson, S. Sauvage, F. Aniel, X. Checoury, G. Beaudoin, L. Largeau, I. Sagnes, G. Ndong, M. Chaigneau, R. Ossikovski, "Recent advances in germanium emission [Invited]," Photonics Res. 1, 102 (2013)
    Download Citation