• Infrared and Laser Engineering
  • Vol. 51, Issue 4, 20220194 (2022)
Hui Xu1, Guangbin Cai1, Chaoxu Mu2, Yanhong Zhang3, and Xin Li1
Author Affiliations
  • 1College of Missile Engineering, Rocket Force University of Engineering, Xi'an 710025, China
  • 2School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • 3Beijing Haidian Qinghe Building Ding 7, Beijing 100085, China
  • show less
    DOI: 10.3788/IRLA20220194 Cite this Article
    Hui Xu, Guangbin Cai, Chaoxu Mu, Yanhong Zhang, Xin Li. Trajectory optimization of hypersonic glide vehicle with minimum total infrared radiation (Invited)[J]. Infrared and Laser Engineering, 2022, 51(4): 20220194 Copy Citation Text show less
    IWOA flow chart
    Fig. 1. IWOA flow chart
    Time history of the height
    Fig. 2. Time history of the height
    Histories of the longitude and latitude
    Fig. 3. Histories of the longitude and latitude
    Time history of the velocity
    Fig. 4. Time history of the velocity
    Resistance acceleration reentry corridor
    Fig. 5. Resistance acceleration reentry corridor
    Time histories of the AOA
    Fig. 6. Time histories of the AOA
    Time histories of the bank angle
    Fig. 7. Time histories of the bank angle
    Time histories of temperature on stagnation point
    Fig. 8. Time histories of temperature on stagnation point
    Time histories of the infrared radiation
    Fig. 9. Time histories of the infrared radiation
    Time histories of the altitude
    Fig. 10. Time histories of the altitude
    Histories of the longitude and latitude
    Fig. 11. Histories of the longitude and latitude
    Time histories of the velocity
    Fig. 12. Time histories of the velocity
    Resistance acceleration reentry corridor
    Fig. 13. Resistance acceleration reentry corridor
    Velocity histories of the AOA
    Fig. 14. Velocity histories of the AOA
    Velocity histories of the bank angle
    Fig. 15. Velocity histories of the bank angle
    Time histories of temperature on stagnation point
    Fig. 16. Time histories of temperature on stagnation point
    Time histories of the infrared radiation intensity
    Fig. 17. Time histories of the infrared radiation intensity
    Time histories of the velocity
    Fig. 18. Time histories of the velocity
    Time histories of the altitude
    Fig. 19. Time histories of the altitude
    Terminal errors of longitude and latitude
    Fig. 20. Terminal errors of longitude and latitude
    Velocity histories of the bank angle
    Fig. 21. Velocity histories of the bank angle
    Time histories of temperature on stagnation point
    Fig. 22. Time histories of temperature on stagnation point
    Time histories of the infrared radiation intensity
    Fig. 23. Time histories of the infrared radiation intensity
    StateInitial conditionTerminal constraintOther parametersValue
    $ r $/km 6025$ {\dot{Q}}_{\text{max}} $/ $ {\text{kW/}}{{\text{m}}^{-{\text{2}}}} $1200
    $ \theta $/(°) 120160$ {q}_{\text{max}} $/ ${\text{kPa} }$400
    $ \varphi $/(°) 4065$ {n}_{\text{max}} $6
    $ V $/m·s−150001200$ {V}_{1} $/m·s−1$ [4\;000,4\;800] $
    $ \gamma $/(°) −1-$ {V}_{2} $/m·s−1$ [1\;800,4\;000] $
    $ \psi $/(°) 40-$ |{\sigma _0}| $/(°) $ [0,80] $
    Table 1. Simulation scene parameters
    Variable$ {V_1}$/m·s−1$ {V}_{2} $/m·s−1$|{\sigma _0}|$/(°) $ J(u)$/kW·sr−1
    Value4000.011800.2141.4829560.64
    Table 2. Optimization results of four algorithms
    Algorithms$ {V_1} $/m·s−1$ {V_2} $/m·s−1$|{\sigma _0}|$/(°) $J(u)$/kW·sr−1
    IWOA4000.011800.2141.4829560.64
    WOA4063.991951.6345.4734563.88
    SSA4000.521800.8943.5431268.92
    PSO4135.481895.5247.9438287.97
    Table 3. Simulation results of four algorithms
    Terminal errorsIWOAWOASSAPSO
    Altitude/km0.0770.841.120.74
    Velocity/m·s−10.00860.2497.5610.50
    Longitude/(°)0.300.720.861.70
    Latitude/(°)0.070.190.210.42
    Peak temperature/K1921.372061.981977.752173.41
    Peak radiation/ ${\text{kW} } \cdot {\text{s} }{ {\text{r} }^{ - 1} }$283.32368.04316.12442.79
    Table 4. Comparison of optimization results
    Disturbance$ 3\sigma $values
    Altitude/m200
    Longitude/(°)1
    latitude/(°)1
    Velocity/m·s−1100
    Flight path angle/(°)0.2
    Head angle/(°)0.2
    Table 5. Disturbances in the Monte Carlo
    Terminal errorMaximum valueAverage valueStandard deviation
    Altitude/km0.990.710.21
    Velocity/m·s−199.9994.889.68
    Longitude/(°)3.711.120.42
    Latitude/(°)1.000.230.20
    Peak temerature/K2213.601962.54178.02
    Peak radiation/ ${\text{kW} } \cdot {\text{s} }{ {\text{r} }^{ - 1} }$471.73314.3452.20
    Total radiation/ ${\text{kW} } \cdot {\text{s} }{ {\text{r} }^{ - 1} }$40278.9131592.073516.83
    Table 6. Simulation results of the Monte Carlo
    Hui Xu, Guangbin Cai, Chaoxu Mu, Yanhong Zhang, Xin Li. Trajectory optimization of hypersonic glide vehicle with minimum total infrared radiation (Invited)[J]. Infrared and Laser Engineering, 2022, 51(4): 20220194
    Download Citation