[1] Carroll, L. A. and Koch, R. J., “Heparin stimulates production of bFGF and TGF-beta 1 by human normal, keloid, and fetal dermal fibroblasts,” Med. Sci. Monitor. 9, BR97–108 (2003).
[2] Burd, A. and Huang, L., “Hypertrophic response and keloid diathesis: Two very different forms of scar,” Plast. Reconstr. Surg. 116, 150e–157e (2005).
[3] Mutalik, S., “Treatment of keloids and hypertrophic scars,” Indian J. Dermatol. Venereol. Leprol. 71, 3–8 (2005).
[4] Mustoe, T.A., Cooter,R. D.,Gold, M. H.,Hobbs, F. D., Ramelet, A. A., Shakespeare, P. G., Stella, M., T′eot, L., Wood, F. M. and Ziegler, U. E., “International clinical recommendations on scar management,” Plast. Reconstr. Surg. 110, 560–571 (2002).
[5] Sheridan, R. L. and Tompkins, R. G., “What’s new in burns and metabolism,” J. Am. Coll. Surg. 198, 243–263 (2004).
[6] Engrav, L. H., Garner, W. L. and Tredget, E. E., “Hypertrophic scar, wound contraction and hyperhypopigmentation,” J. Burn. Care. Res. 28, 593– 597 (2007).
[7] Morris, D. E., Wu, L., Zhao, L. L., Bolton, L., Roth, S. I., Ladin, D. A. and Mustoe, T. A., “Acute and chronic animal models for excessive dermal scarring: Quantitative studies,” Plast. Reconstr. Surg. 100, 674–681 (1997).
[8] Hillmer, M. P. and MacLeod, S. M., “Experimental keloid scar models: A review of methodological issues,” J. Cutan. Med. Surg. 6, 354–359 (2002).
[9] Aksoy, M. H., Vargel, I., Canter, I. H., Erk, Y., Sargon, M., Pinar, A. and Tezel, G. G., “A new experimental hypertrophic scar model in guinea pigs,” Aesthetic. Plast. Surg. 26, 388–396 (2002).
[10] Palero, J., Bruijn, H., Heuvel, A., Sterenborg, H. and Gerritsen, H., “In vivo non-linear spectral imaging in mouse skin,” Opt. Express. 14, 4395–4402 (2006).
[11] Chen, J. X., Zhuo, S. M., Chen, R., Jiang, X. S., Xie, S. S. and Zou, Q. L., “Depth-resolved spectral imaging of rabbit oesophageal tissue based on two-photon excited fluorescence and second-harmonic generation,” New. J. Phys. 9, 212 (2007).
[12] Zhuo, S. M., Chen, J. X., Jiang, X. S., Cheng, X. C. and Xie, S. S., “Visualizing extracellular matrix and sensing fibroblasts metabolism in human dermis by non-linear spectral imaging,” Skin Res. Technol. 13, 406–411 (2007).
[13] Bharati, M. H., Liu, J. J. and MacGregor, J. F., “Image texture analysis: Methods and comparisons,” Chemom. Intell. Lab. Syst. 72, 57–71 (2004).
[14] Truchili, H., Bouhlel,M. S., Derbel, N. and Kamoun, L., “A survey and evaluation of edge detection operators application to medical images,” IEEE 4, 706–709 (2002).
[15] Zhuo, S. M., Chen, J. X., Jiang, X. S., Xie, S. S., Chen, R., Cao, N., Zou, Q. L. and Xiong, S. Y., “The layered-resolved microstructure and spectroscopy of mouse oral mucosa using multiphoton microscopy,” Phys. Med. Biol. 52, 4967–4980 (2007).
[16] Zhuo, S. M., Chen, J. X., Luo, T. S., Zou, D. S. and Zhao, J. J., “Multimode non-linear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode,” Opt. Express. 14, 7810 (2006).
[17] Zhuo, S. M., Chen, J. X., Yu, B. Y., Jiang, X. S., Luo, T., Liu, Q. G., Chen, R. and Xie, S. S., “Nonlinear optical microscopy of the bronchus,” J. Biomed. Opt. 13, 054024 (2008).
[18] Zhuo, S. M., Chen, J. X., Cao, N., Jiang, X. S., Xie, S. S. and Xiong, S. Y., “Imaging collagen remodeling and sensing transplanted autologous fibroblasts metabolism in mouse dermis using multimode nonlinear optical imaging,” Phys. Med. Biol. 53, 3317– 3325 (2008).
[19] Amadeu, T. P., Braune, A. S., Porto, L. C., Desmouliere, A. and Costa, A. M. A., “Fibrillin-1 and elastin are differentially expressed in hypertrophic scars and keloids,” Wound. Repair. Regen. 12, 169–174 (2004).
[20] Da Costa, V., Wei, R., Lim, R., Sun, C. H., Brown, J. J. and Wong, B. J., “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial. Plast. Surg. 10, 38–43 (2008).