• Acta Optica Sinica
  • Vol. 41, Issue 19, 1928003 (2021)
Zongren Li1, Hu Deng1、2、3、*, Jieping Yang1, Quancheng Liu1, Jin Guo1, and Liping Shang1、2、3
Author Affiliations
  • 1School of Information Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
  • 2Key Laboratory of Special Environment Robotics of Sichuan Province, Mianyang, Sichuan 621010, China
  • 3Joint Laboratory for Extreme Conditions Matter Properties, Research Center of Laser Fusion, China Academy of Engineering Physics, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
  • show less
    DOI: 10.3788/AOS202141.1928003 Cite this Article Set citation alerts
    Zongren Li, Hu Deng, Jieping Yang, Quancheng Liu, Jin Guo, Liping Shang. High-Sensitivity Terahertz Microfluidic Sensor Based on Irregular U-type Structure[J]. Acta Optica Sinica, 2021, 41(19): 1928003 Copy Citation Text show less
    References

    [1] Ahmadivand A, Gerislioglu B, Tomitaka A et al. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells[J]. Biomedical Optics Express, 9, 373-386(2018).

    [2] Yang X, Zhao X, Yang K et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 34, 810-824(2016).

    [3] Fan X D, White I M, Shopova S I et al. Sensitive optical biosensors for unlabeled targets: a review[J]. Analytica Chimica Acta, 620, 8-26(2008).

    [4] Xie L J, Gao W L, Shu J et al. Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics[J]. Scientific Reports, 5, 8671(2015).

    [5] Yan X, Yang M S, Zhang Z et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 126, 485-492(2019).

    [6] Liu Z W, Lee H, Xiong Y et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 315, 1686(2007).

    [7] Dubinov A E, Mytareva L A. Invisible cloaking of material bodies using the wave flow method[J]. Physics-Uspekhi, 53, 455-479(2010).

    [8] Yen T J, Padilla W J, Fang N et al. Terahertz magnetic response from artificial materials[J]. Science, 303, 1494-1496(2004).

    [9] Park S J, Hong J T, Choi S J et al. Detection of microorganisms using terahertz metamaterials[J]. Scientific Reports, 4, 4988(2014).

    [10] Geng Z X, Zhang X, Fan Z Y et al. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage[J]. Scientific Reports, 7, 16378(2017).

    [11] Wang J, Wang S, Singh R et al. Metamaterial inspired terahertz devices: from ultra-sensitive sensing to near field manipulation[J]. Chinese Optics Letters, 11, 011602(2013).

    [12] Serita K, Murakami H, Kawayama I et al. A terahertz-microfluidic chip with a few arrays of asymmetric meta-atoms for the ultra-trace sensing of solutions[J]. Photonics, 6, 12(2019).

    [13] Fan N, Su B, Wu Y X et al. Sandwich terahertz microfluidic chip[J]. Spectroscopy and Spectral Analysis, 38, 1362-1367(2018).

    [14] Ou H L, Lu F Y, Xu Z F et al. Terahertz metamaterial with multiple resonances for biosensing application[J]. Nanomaterials, 10, 1038(2020).

    [15] Salim A, Lim S. Review of recent metamaterial microfluidic sensors[J]. Sensors, 18, 232(2018).

    [16] Hu X, Xu G Q, Wen L et al. Metamaterial absorber integrated microfluidic terahertz sensors[J]. Laser & Photonics Reviews, 10, 962-969(2016).

    [17] Lan F, Luo F, Mazumder P et al. Dual-band refractometric terahertz biosensing with intense wave-matter-overlap microfluidic channel[J]. Biomedical Optics Express, 10, 3789-3799(2019).

    [18] Zhang R, Chen Q M, Liu K et al. Terahertz microfluidic metamaterial biosensor for sensitive detection of small-volume liquid samples[J]. IEEE Transactions on Terahertz Science and Technology, 9, 209-214(2019).

    [19] Zhang Y J, Wang S F, Zhong G C et al. Metamaterial-based terahertz multi-band sensors integrated with microfluidic channels[J]. Chinese Journal of Lasers, 46, 0614037(2019).

    [20] Wang X, Wang J L. Terahertz metamaterial absorber sensor based on three-dimensional split-ring resonator array and microfluidic channel[J]. Acta Optica Sinica, 40, 1904001(2020).

    [21] Wu X J, Quan B G, Pan X C et al. Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor[J]. Biosensors and Bioelectronics, 42, 626-631(2013).

    [22] Xing W. Studies of terahertz filters based on metamaterials[D]. Beijing: Beijing Jiaotong University(2016).

    [23] Zhang Y P, Li T T, Lü H H et al. Study on sensing characteristics of I-shaped terahertz metamaterial absorber[J]. Acta Physica Sinica, 64, 117801(2015).

    [24] Li F Y, He K, Tang T T et al. The terahertz metamaterials for sensitive biosensors in the detection of ethanol solutions[J]. Optics Communications, 475, 126287(2020).

    [25] Song Z Y, Feng G Y, Zhang T. Accurate measurement of the refractive index D-glucose solution at various concentrations at different temperatures[J]. Chinese Journal of Lasers, 41, 1208008(2014).

    Zongren Li, Hu Deng, Jieping Yang, Quancheng Liu, Jin Guo, Liping Shang. High-Sensitivity Terahertz Microfluidic Sensor Based on Irregular U-type Structure[J]. Acta Optica Sinica, 2021, 41(19): 1928003
    Download Citation