• Infrared and Laser Engineering
  • Vol. 52, Issue 3, 20220470 (2023)
Lili Dong1, Qing Gao2, Jiasen Wu2, Xiangyu Xia2..., Shiming Liu2 and Junshan Xiu2,*|Show fewer author(s)
Author Affiliations
  • 1School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
  • 2School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
  • show less
    DOI: 10.3788/IRLA20220470 Cite this Article
    Lili Dong, Qing Gao, Jiasen Wu, Xiangyu Xia, Shiming Liu, Junshan Xiu. Rapid quantitative analysis of ZnGa2O4(GZO) thin films using picosecond laser induced breakdown spectroscopy[J]. Infrared and Laser Engineering, 2023, 52(3): 20220470 Copy Citation Text show less
    References

    [1] H Guo, K Zhang, X Jia, et al. Effect of ITO film deposition conditions on ITO and CdS films of semiconductor solar cells. Optik, 140, 322-330(20177).

    [2] H Ferhati, F Djeffal, A Benhaya. Optimized high-performance ITO/Ag/ITO multilayer transparent electrode deposited by RF magnetron sputtering. Superlattices and Microstructures, 129(5), 176-184(2019).

    [3] M N Rezaie, N Manavizadeh, E M N Abadi, et al. Comparison study of transparent RF-sputtered ITO/AZO and ITO/ZnO bilayers for near UV-OLED applications. Applied Surface Science, 392(1), 549-556(2017).

    [4] S Yu, L Li, X Lyu, et al. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit. Scientific Reports, 6, 1-8(2016).

    [5] B L Zhu, F Liu, K Li, et al. Sputtering deposition of transparent conductive F-doped SnO2 (FTO) thin films in hydrogen-containing atmosphere. Ceramics International, 43, 10288-10298(2017).

    [6] D H Olson, C M Rost, J T Gaskins, et al. Size effects on the cross-plane thermal conductivity of transparent conducting indium tin oxide and fluorine tin oxide thin films. IEEE Transactions on Components, Packaging and Manufacturing Technology, 9, 51-57(2018).

    [7] J Yu, Y Gao, L Wang, et al. Anti-reductive properties of AZO/FTO bilayered transparent conducting films. Surface Engineering, 36, 1-5(2020).

    [8] B Zhao, L Tang, B Wang, et al. Optical and electrical characterization of gradient AZO thin film by magnetron sputtering. Journal of Materials Science: Materials in Electronics, 27, 10320-10324(2016).

    [9] S F Tseng. Investigation of post-annealing aluminum-doped zinc oxide (AZO) thin films by a graphene-based heater. Applied Surface Science, 448, 163-167(2018).

    [10] Ö B Sürücü. Characterization of GZO thin films fabricated by RF magnetron sputtering method and electrical properties of In/GZO/Si/Al diode. Journal of Materials Science: Materials in Electronics, 30, 19270-19278(2019).

    [11] C Y Tsay, W T Hsu. Comparative studies on ultraviolet-light-derived photoresponse properties of ZnO, AZO, and GZO transparent semiconductor thin films. Materials, 10, 1379(2017).

    [12] J T Gudmundsson. Physics and technology of magnetron sputtering discharges. Plasma Sources Science and Technology, 29, 113001(2020).

    [13] C H Chang, C B Yang, C C Sung, et al. Structure and tribological behavior of (AlCrNbSiTiV) N film deposited using direct current magnetron sputtering and high power impulse magnetron sputtering. Thin Solid Films, 668, 63-68(2018).

    [14] J Billiet, R Dams, J Hoste. Multielement thin film standards for XRF analysis. X-Ray Spectrometry, 9, 206-211(1980).

    [15] F Li, L Ge, Z Tang, et al. Recent developments on XRF spectra evaluation. Applied Spectroscopy Reviews, 55, 263-287(2020).

    [16] H Habazaki, T Matsuo, H Konno, et al. Analysis of anodic films on Nb and NbNx by glow discharge optical emission spectroscopy. Surface and Interface Analysis, 35, 618-622(2003).

    [17] I Heikkilä, C Eggertson, M Randelius, et al. First experiences on characterization of surface oxide films in powder particles by Glow Discharge Optical Emission Spectroscopy (GD-OES). Metal Powder Report, 71, 261-264(2016).

    [18] L Jolivet, M Leprince, S Moncayo, et al. Review of the recent advances and applications of LIBS-based imaging. Spectrochimica Acta Part B: Atomic Spectroscopy, 151, 41-53(2019).

    [19] Y Yang, L Zhang, X Hao, et al. Classification of iron ore based on machine learning and laser induced breakdown spectroscopy. Infrared and Laser Engineering, 50, 20210219(2021).

    [20] S Liu, Q Gao, L Dong, et al. Picosecond laser ablation and depth profile of Cu (In, Ga) Se2 thin film layer. Optics Communications, 462(5), 125369(2020).

    [21] J Xiu, S Liu, S Fu, et al. Rapid qualitative and quantitative analysis of elemental composition of Cu (In, Ga) Se 2 thin films using laser-induced breakdown spectroscopy. Applied Optics, 58, 1040-1047(2019).

    [22] S Liu, Q Gao, J Xiu, et al. Rapid micro-analysis of Al-In-Sn-O thin film using laser induced breakdown spectroscopy with picosecond laser pulses. Spectrochimica Acta Part B: Atomic Spectroscopy, 160(10), 105684(2019).

    [23] Q Gao, S Liu, J Wu, et al. Rapid quantitative analysis and optical properties of ZCTO thin films based on picosecond laser-induced breakdown spectroscopy. Applied Physics B: Lasers and Optics, 127, 161)-168(2021).

    [24] G Haacke. New figure of merit for transparent conductors. Journal of Applied Physics, 47, 4086-4089(1976).

    [25] S Liang, H Sheng, Y Liu, et al. ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth, 225, 110-113(2001).

    [26] Griem H R. Plasma Spectroscopy[M]. New Yk: McGrawHill, 1964.

    Lili Dong, Qing Gao, Jiasen Wu, Xiangyu Xia, Shiming Liu, Junshan Xiu. Rapid quantitative analysis of ZnGa2O4(GZO) thin films using picosecond laser induced breakdown spectroscopy[J]. Infrared and Laser Engineering, 2023, 52(3): 20220470
    Download Citation