• Photonics Research
  • Vol. 12, Issue 2, 321 (2024)
Zhensen Gao1、2、3, Zhitao Deng1, Lihong Zhang1, Xulin Gao1, Yuehua An4, Anbang Wang1、3, Songnian Fu1、2、3, Zhaohui Li2、5, Yuncai Wang1、2、3、*, and Yuwen Qin1、3
Author Affiliations
  • 1School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • 2Pengcheng Laboratory, Shenzhen 518062, China
  • 3Key Laboratory of Photonic Technology for Integrated Communication and Sensing, Ministry of Education, Guangzhou 510006, China
  • 4School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
  • 5School of Electrical and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
  • show less
    DOI: 10.1364/PRJ.502992 Cite this Article Set citation alerts
    Zhensen Gao, Zhitao Deng, Lihong Zhang, Xulin Gao, Yuehua An, Anbang Wang, Songnian Fu, Zhaohui Li, Yuncai Wang, Yuwen Qin. 10 Gb/s classical secure key distribution based on temporal steganography and private chaotic phase scrambling[J]. Photonics Research, 2024, 12(2): 321 Copy Citation Text show less
    References

    [1] X. Zhang, H. Ji, M. Luo. 3.61  Pbit/s S, C, and L-band transmission with 19-core single-mode fiber. IEEE Photon. Technol. Lett., 35, 830-833(2023).

    [2] B. J. Puttnam, G. Rademacher, R. S. Luís. Space-division multiplexing for optical fiber communications. Optica, 8, 1186-1203(2021).

    [3] Y. Gong, R. Kumar, A. Wonfor. Secure optical communication using a quantum alarm. Light Sci. Appl., 9, 170(2020).

    [4] N. S. Kapov, M. Furdek, S. Zsigmond. Physical-layer security in evolving optical networks. IEEE Commun. Mag., 54, 110-117(2016).

    [5] S. Rothe, N. Koukourakis, H. Radner. Physical layer security in multimode fiber optical networks. Sci. Rep., 10, 2740(2020).

    [6] M. Fok, Z. Wang, Y. Deng. Optical layer security in fiber-optic networks. IEEE Trans. Inf. Forensics Security, 6, 725-736(2011).

    [7] C. E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech. J., 28, 656-715(1949).

    [8] M. Iqbal, L. Velasco, N. Costa. LPsec: a fast and secure cryptographic system for optical connections. J. Opt. Commun. Netw., 14, 278-288(2022).

    [9] T. Qiu, W. Shao, L. Deng. Secure key distribution based on the polarization reciprocity of fiber and a coherent reception architecture. Opt. Lett., 48, 3547-3550(2023).

    [10] L. Zhang, X. Huang, Z. Chai. Unidirectional physical layer secure key distribution in a fiber channel assisted by neural networks. Opt. Lett., 47, 4263-4266(2022).

    [11] S. Aftergood. The darkening web: the war for cyberspace. Nature, 547, 30-31(2017).

    [12] K. A. G. Fisher, A. Broadbent, L. K. Shalm. Quantum computing on encrypted data. Nat. Commun., 5, 3074(2014).

    [13] E. Diamanti, H. K. Lo, B. Qi. Practical challenges in quantum key distribution. npj Quantum Inf., 2, 16025(2016).

    [14] F. Cavaliere, E. Prati, L. Poti. Secure quantum communication technologies and systems: from labs to markets. Quantum Rep., 2, 80-106(2020).

    [15] J. Scheuer, A. Yariv. Giant fiber lasers: a new paradigm for secure key distribution. Phys. Rev. Lett., 97, 140502(2006).

    [16] A. E. Taher, O. Kotlicki, P. Harper. Secure key distribution over a 500  km long link using a Raman ultra-long fiber laser. Laser Photon. Rev., 8, 436-442(2014).

    [17] D. B. Lev, J. Scheuer. Enhanced key-establishing rates and efficiencies in fiber laser key distribution systems. Phys. Lett. A, 373, 1101-4296(2009).

    [18] A. Tonello, A. Barthelemy, K. Krupa. Secret key exchange in ultralong lasers by radio frequency spectrum coding. Light Sci. Appl., 4, e276(2015).

    [19] A. Zadok, J. Scheuer, J. Sendowski. Secure key generation using an ultra-long fiber laser: transient analysis and experiment. Opt. Express, 16, 16680-16690(2008).

    [20] K. Kravtsov, Z. X. Wang, W. Trappe. Physical layer secret key generation for fiber-optical networks. Opt. Express, 21, 23756-23771(2013).

    [21] I. U. Zaman, A. B. Lopez, M. A. A. Faruque. Physical layer cryptographic key generation by exploiting PMD of an optical fiber link. J. Lightwave Technol., 36, 5903-5911(2018).

    [22] A. A. E. Hajomer, L. Zhang, X. Yang. 284.8-Mb/s physical-layer cryptographic key generation and distribution in fiber networks. J. Lightwave Technol., 39, 1595-1601(2021).

    [23] W. Shao, M. Cheng, L. Deng. High-speed secure key distribution using local polarization modulation driven by optical chaos in reciprocal fiber channel. Opt. Lett., 46, 5910-5913(2021).

    [24] M. Sciamanna, K. A. Shore. Physics and applications of laser diode chaos. Nat. Photonics, 9, 151-162(2015).

    [25] A. Argyris, E. Grivas, M. Hamacher. Chaos-on-a-chip secures data transmission in optical fiber links. Opt. Express, 18, 5188-5198(2010).

    [26] A. Argyris, D. Syvridis, L. Larger. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 438, 343-346(2005).

    [27] I. Kanter, M. Butkovski, Y. Peleg. Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography. Opt. Express, 18, 18292-18302(2010).

    [28] X. Porte, M. C. Soriano, D. Brunner. Bidirectional private key exchange using delay-coupled semiconductor lasers. Opt. Lett., 41, 2871-2874(2016).

    [29] C. Xue, N. Jiang, Y. Lv. Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems. IEEE Trans. Commun., 65, 312-319(2017).

    [30] N. Jiang, C. P. Xue, D. Liu. Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection. Opt. Lett., 42, 1055-1058(2017).

    [31] L. Wang, M. Chao, A. Wang. High-speed physical key distribution based on dispersion-shift-keying chaos synchronization in commonly driven semiconductor lasers without external feedback. Opt. Express, 28, 37919-37935(2020).

    [32] H. Gao, A. Wang, L. Wang. 0.75  Gbit/s high-speed classical key distribution with mode-shift keying chaos synchronization of Fabry-Perot lasers. Light Sci. Appl., 10, 172(2021).

    [33] Z. Gao, Z. Ma, S. Wu. Physical secure key distribution based on chaotic self-carrier phase modulation and time-delayed shift keying of synchronized optical chaos. Opt. Express, 30, 23953-23966(2022).

    [34] T. Sasaki, I. Kakesu, Y. Mitsui. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution. Opt. Express, 25, 26029-26044(2017).

    [35] H. Koizumi, S. Morikatsu, H. Aida. Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers. Opt. Express, 21, 17869-17893(2013).

    [36] K. Yoshimura, J. Muramatsu, P. Davis. Secure key distribution using correlated randomness in lasers driven by common random light. Phys. Rev. Lett., 108, 070602(2012).

    [37] T. Yamamoto, I. Oowada, H. Yip. Common-chaotic-signal induced synchronization in semiconductor lasers. Opt. Express, 15, 3974-3980(2007).

    [38] F. Bohm, S. Sahakian, A. Dooms. Stable high-speed encryption key distribution via synchronization of chaotic optoelectronic oscillators. Phys. Rev. Appl., 13, 064014(2020).

    [39] S. Liu, N. Jiang, Y. Zhang. Secure key distribution based on hybrid chaos synchronization between semiconductor lasers subject to dual injections. Opt. Express, 30, 32366-32380(2022).

    [40] Z. Zhao, M. Cheng, C. Luo. Semiconductor-laser-based hybrid chaos source and its application in secure key distribution. Opt. Lett., 44, 2605-2608(2019).

    [41] Z. Gao, S. Wu, Z. Deng. Private correlated random bit generation based on synchronized wideband physical entropy sources with hybrid electro-optic nonlinear transformation. Opt. Lett., 47, 3788-3791(2022).

    [42] A. Zhao, N. Jiang, Y. Wang. Correlated random bit generation based on common-signal-induced synchronization of wideband complex physical entropy sources. Opt. Lett., 44, 5957-5960(2019).

    [43] N. Jiang, A. Zhao, C. Xue. Physical secure optical communication based on private chaotic spectral phase encryption/decryption. Opt. Lett., 44, 1536-1539(2019).

    [44] Z. Gao, Q. Wu, L. Liao. Experimental demonstration of synchronous privacy enhanced chaotic temporal phase en/decryption for high speed secure optical communication. Opt. Express, 30, 31209-31219(2022).

    [45] A. Zhao, N. Jiang, S. Liu. Physical layer encryption for WDM optical communication systems using private chaotic phase scrambling. J. Lightwave Technol., 39, 2288-2295(2021).

    [46] B. Wu, Z. Wang, Y. Tian. Optical steganography based on amplified spontaneous emission noise. Opt. Express, 21, 2065-2071(2013).

    [47] Q. Cai, P. Li, Y. Shi. Tbps parallel random number generation based on a single quarter-wavelength-shifted DFB laser. Opt. Laser Technol., 162, 109273(2023).

    [48] D. Wang, L. Wang, Y. Guo. Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser. Opt. Express, 27, 3065-3073(2019).

    [49] C. Huang, X. Gao, S. Wu. Key space enhanced correlated random bit generation based on synchronized electro-optic self-feedback loops with Mach–Zehnder modulators. Photonics, 9, 952(2022).

    [50] J. M. Mateo, D. Elkouss, V. Martin. Key reconciliation for high performance quantum key distribution. Sci Rep., 3, 1576(2013).

    [51] S. Chen, L. Zhang, W. Hu. Efficient post-processing for physical-layer secure key distribution in fiber. IEEE Photon. Technol. Lett., 33, 325-328(2021).

    [52] C. Bennett, G. Brassard, U. M. Maurer. Generalized privacy amplication. IEEE Trans. Inf. Theory, 41, 1915-1923(1995).

    [53] L. Wang, J. Wang, Y. Wu. Chaos synchronization of semiconductor lasers over 1040-km fiber relay transmission with hybrid amplification. Photon. Res., 11, 953-960(2023).

    Zhensen Gao, Zhitao Deng, Lihong Zhang, Xulin Gao, Yuehua An, Anbang Wang, Songnian Fu, Zhaohui Li, Yuncai Wang, Yuwen Qin. 10 Gb/s classical secure key distribution based on temporal steganography and private chaotic phase scrambling[J]. Photonics Research, 2024, 12(2): 321
    Download Citation