• Opto-Electronic Engineering
  • Vol. 47, Issue 7, 190342 (2020)
Zhao Ziliang1、*, Liu Jiazhen1, Hu Zhen1, Jia Yanhao1, Wang Yue1, Li Qingwei1, Zhao Zeyang1, and Liu Yangyi2、3、4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190342 Cite this Article
    Zhao Ziliang, Liu Jiazhen, Hu Zhen, Jia Yanhao, Wang Yue, Li Qingwei, Zhao Zeyang, Liu Yangyi. A hierarchical method for quick and automatic recognition of sunspots[J]. Opto-Electronic Engineering, 2020, 47(7): 190342 Copy Citation Text show less
    References

    [1] Liu Y, Zhang H. Relationship between magnetic field evolution and major flare event on July 14, 2000[J]. Astronomy & Astro-physics, 2001, 372(3): 1019–1029.

    [3] Bao H, Rao C H, Tian Y, et al. Research progress on adaptive optical image post reconstruction[J]. Opto-Electronic Engineer-ing, 2018, 45(3): 170730.

    [4] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012: 1097–1105.

    [5] Matsugu M, Mori K, Mitari Y, et al. Subject independent facial expression recognition with robust face detection using a con-volutional neural network[J]. Neural Networks, 2003, 16(5–6): 555–559.

    [6] Acharya U R, Oh S L, Hagiwara Y, et al. A deep convolutional neural network model to classify heartbeats[J]. Computers in Biology and Medicine, 2017, 89: 389–396.

    [7] Banko M, Brill E. Scaling to very very large corpora for natural language disambiguation[C]//Proceedings of the 39th Annual Meeting on Association for Computational Linguistics, Toulouse, France, 2001: 26–33.

    [8] Noor M H M, Salcic Z, Wang K I K. Adaptive sliding window segmentation for physical activity recognition using a single tri-axial accelerometer[J]. Pervasive and Mobile Computing, 2017, 38: 41–59.

    [9] Nguyen T T, Willis C P, Paddon D J, et al. A hybrid system for learning sunspot recognition and classification[C]//Proceedings of 2006 International Conference on Hybrid Information Tech-nology, Cheju Island, South Korea, 2006: 257–264.

    [10] Zhao C, Lin G H, Deng Y Y, et al. Automatic recognition of sunspots in HSOS full-disk solar images[J]. Publications of the Astronomical Society of Australia, 2016, 33: e018.

    [11] Zharkov S, Zharkova V, Ipson S, et al. Technique for automated recognition of sunspots on full-disk solar images[J]. EURASIP Journal on Advances in Signal Processing, 2005, 2005(15): 318462.

    [12] Fu X N, Liao C W,Bai X Y, et al. A detection method for sunspots based on convolutional neural network LeNet-5[J]. Astronomical Research & Technology, 2018, 15(3): 340–346.

    [13] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324.

    [14] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 779–788.

    [15] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005: 886–893.

    [16] Uijlings J R R, van de Sande K E A, Gevers T, et al. Selective search for object recognition[J]. International Journal of Com-puter Vision, 2013, 104(2): 154–171.

    [17] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmenta-tion[C]//Proceedings of 2014 IEEE Conference on Computer Vi-sion and Pattern Recognition, Columbus, OH, USA, 2014: 580–587.

    [18] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916.

    [19] Girshick R. Fast R-CNN[C]//Proceedings of 2015 IEEE Interna-tional Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.

    [20] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149.

    [21] Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolu-tions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 1–9.

    [22] Redmon J, Farhadi A. YOLO9000: better, faster, strong-er[C]//Proceedings of 2017 IEEE Conference on Computer Vi-sion and Pattern Recognition, Honolulu, HI, USA, 2017: 6517–6525.

    [23] Redmon J, Farhadi A. Yolov3: an incremental improvement[Z]. arXiv: 1804.02767[cs:CV], 2018.

    [24] Baranyi T, Gy.ri L, Ludmány A. On-line tools for solar data compiled at the Debrecen observatory and their extensions with the Greenwich sunspot data[J]. Solar Physics, 2016, 291(9): 3081–3102.

    [25] Gy.ri L, Ludmány A, Baranyi T. Comparative analysis of De-brecen sunspot catalogues[J]. Monthly Notices of the Royal As-tronomical Society, 2017, 465(2): 1259–1273.

    [26] Kilcik A, Ozguc A, Yurchyshyn V, et al. Sunspot count periodici-ties in different Zurich sunspot group classes since 1986[J]. So-lar Physics, 2014, 289(11): 4365–4376.

    [27] Rosten E, Porter R, Drummond T. Faster and better: a machine learning approach to corner detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 105–119.

    [28] Mair E, Hager G D, Burschka D, et al. Adaptive and generic corner detection based on the accelerated segment test[C]//Proceedings of the 11th European Conference on Computer Vision, Heraklion, Crete, Greece, 2010: 183–196.

    Zhao Ziliang, Liu Jiazhen, Hu Zhen, Jia Yanhao, Wang Yue, Li Qingwei, Zhao Zeyang, Liu Yangyi. A hierarchical method for quick and automatic recognition of sunspots[J]. Opto-Electronic Engineering, 2020, 47(7): 190342
    Download Citation