• Opto-Electronic Engineering
  • Vol. 46, Issue 3, 1 (2019)
Ouyang Xu1, Xu Yi1、*, Xian Mingcong1, Cao Yaoyu2, Dai Qiaofeng3, Li Xiangping2, and Lan Sheng3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180584 Cite this Article
    Ouyang Xu, Xu Yi, Xian Mingcong, Cao Yaoyu, Dai Qiaofeng, Li Xiangping, Lan Sheng. Encoding disorder gold nanorods for multi-dimensional optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 1 Copy Citation Text show less
    References

    [1] Seagete Technology LLC. Data age 2025 – the digitization of the world[EB/OL]. 2018. https://www.seagate.com/our-story /data-age-2025/

    [2] Horimai H, Tan X D. Collinear technology for a holographic versatile disk[J]. Applied Optics, 2006, 45(5): 910–914.

    [3] Tan X D, Lin X, Wu A A, et al. High density collinear holographic data storage system[J]. Frontiers of Optoelectronics, 2014, 7(4): 443–449.

    [4] Lin X, Huang Y, Shimura T, et al. Fast non-interferometric iterative phase retrieval for holographic data storage[J]. Optics Express, 2017, 25(25): 30905–30915.

    [5] Mansuripur M. Effects of high-numerical-aperture focusing on the state of polarization in optical and magneto-optic data storage systems[J]. Applied Optics, 1991, 30(22): 3154–3162.

    [6] Mansuripur M, Zakharian A R, Lesuffleur A, et al. Plasmonic nano-structures for optical data storage[J]. Optics Express, 2009, 17(16): 14001–14014.

    [7] Mansuripur M, Sincerbox G. Principles and techniques of optical data storage[J]. Proceedings of the IEEE, 1997, 85(11): 1780–1796.

    [8] Airy G B. On the diffraction of an object-glass with circular aperture[J]. Transactions of the Cambridge Philosophical Society, 1835, 5: 283–291.

    [9] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 2014, 3(5): e177.

    [10] Gu M, Zhang Q M, Lamon S. Nanomaterials for optical data storage[J]. Nature Reviews Materials, 2016, 1(12): 16070.

    [11] Oh W Y, Yun S H, Vakoc B J, et al. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing[J]. Optics Express, 2008, 16(2): 1096–1103.

    [12] Aiki K, Nakamura M, Umeda J. Frequency multiplexing light source with monolithically integrated distributed-feedback diode lasers[J]. Applied Physics Letters, 1976, 29(8): 506–508.

    [13] Chon J W M, Bullen C, Zijlstra P, et al. Spectral encoding on Gold nanorods doped in a silica sol–gel matrix and its application to high‐density optical data storage[J]. Advanced Functional Materials, 2007, 17(6): 875–880.

    [14] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410–413.

    [15] Dai Q F, Ouyang M, Yuan W G, et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory[J]. Advanced Materials, 2017, 29(35): 1701918.

    [16] Li X P, Lan T H, Tien C H, et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 2012, 3: 998.

    [17] Taylor A B, Michaux P, Mohsin A S M, et al. Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage[J]. Optics Express, 2014, 22(11): 13234–13243.

    [18] Li X P, Chon J W M, Wu S H, et al. Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer[J]. Optics Letters, 2007, 32(3): 277–279.

    [19] Zheng Y B, Liu H Y, Xiang J, et al. Hot luminescence from gold nanoflowers and its application in high-density optical data storage[J]. Optics Express, 2017, 25(8): 9262–9275.

    [20] Ren H R, Li X P, Gu M. Polarization-multiplexed multifocal arrays by a π-phase-step-modulated azimuthally polarized beam[J]. Optics Letters, 2014, 39(24): 6771–6774.

    [21] Wang Z H, Hu Y S, Xiong X, et al. Encoding and display with stereo split-ring resonator arrays[J]. Optics Letters, 2017, 42(6): 1153–1156.

    [22] Lu G W, Abedin K S, Miyazaki T. All-optical RZ-DPSK WDM to RZ-DQPSK phase multiplexing using four-wave mixing in highly nonlinear fiber[J]. IEEE Photonics Technology Letters, 2007, 19(21): 1699–1701.

    [23] Yun H, Lee S Y, Hong K, et al. Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity[J]. Nature Communications, 2015, 6: 7133.

    [24] Ren H R, Li X P, Zhang Q M, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287): 805–809.

    [25] Mehmood M Q, Mei S T, Hussain S, et al. Visible‐frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 2016, 28(13): 2533–2539.

    [26] Ding Y H, Xu J, Da Ros F, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer[J]. Optics Express, 2013, 21(8): 10376–10382.

    [27] Carpenter J, Wilkinson T D. All optical mode-multiplexing using holography and multimode fiber couplers[J]. Journal of Lightwave Technology, 2012, 30(12): 1978–1984.

    [28] Hong M H, Luk’yanchuk B, Huang S M, et al. Femtosecond laser application for high capacity optical data storage[J]. Applied Physics A, 2004, 79(4–6): 791–794.

    [29] Taylor A B, Kim J, Chon J W M. Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout[J]. Optics Express, 2012, 20(5): 5069–5081.

    [30] Li X P, Chon J W M, Evans R A, et al. Two-photon energy transfer enhanced three-dimensional optical memory in quantum-dot and azo-dye doped polymers[J]. Applied Physics Letters, 2008, 92(6): 063309.

    [31] Li X P, Bullen C, Chon J W M, et al. Two-photon-induced three-dimensional optical data storage in CdS quantum-dot doped photopolymer[J]. Applied Physics Letters, 2007, 90(16): 161116.

    [32] Chen H J, Lei S, Li Q, et al. Gold nanorods and their plasmonic properties[J]. Chemical Society Reviews, 2013, 42(7): 2679–2724.

    [33] Fang Z Y, Zhu X. Plasmonics in nanostructures[J]. Advanced Materials, 2013, 25(28): 3840–3856.

    [34] Fang Z Y, Fan L R, Lin C F, et al. Plasmonic coupling of bow tie antennas with Ag nanowire[J]. Nano Letters, 2011, 11(4): 1676–1680.

    [35] Lin J, Wang D P, Si G Y. Recent progress on plasmonic metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 289–296.

    [36] Li X P, Ren H R, Chen X, et al. Athermally photoreduced graphene oxides for three-dimensional holographic images[J]. Nature Communications, 2015, 6: 6984.

    [37] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780–782.

    [38] Qin F, Li X P, Hong M H. From super-oscillatory lens to super-critical lens:surpassing the diffraction limit via light field modulation[J]. Opto-Electronic Engineering, 2017, 44(8): 757–771.

    [39] Gao P, Yao N, Wang C T, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110.

    [40] Tang D L, Wang C T, Zhao Z Y, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713–719.

    [41] Cao Y Y, Xie F, Zhang P D, et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 2017, 44(12): 1133–1145.

    [42] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.

    [43] Cao Y Y, Li X P, Gu M. Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach[J]. Applied Physics Letters, 2014, 105(26): 263102.

    [44] Li X P, Cao Y Y, Tian N, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567–570.

    [45] Wang Q, Maddock J, Rogers E T F, et al. 1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage[J]. Applied Physics Letters, 2014, 104(12): 121105.

    [46] Chu Y H, Xiao H M, Wang G, et al. Randomly distributed plasmonic hot spots for multilevel optical storage[J]. The Journal of Physical Chemistry C, 2018, 122(27): 15652–15658.

    [47] Cui Y, Phang I Y, Hegde R S, et al. Plasmonic silver nanowire structures for two-dimensional multiple-digit molecular data storage application[J]. ACS Photonics, 2014, 1(7): 631–637.

    [48] Zhou Y, Han S T, Sonar P, et al. Nonvolatile multilevel data storage memory device from controlled ambipolar charge trapping mechanism[J]. Scientific Reports, 2013, 3: 2319.

    [49] Lee J S, Kim Y M, Kwon J H, et al. Multilevel data storage memory devices based on the controlled capacitive coupling of trapped electrons[J]. Advanced Materials, 2011, 23(18): 2064–2068.

    [50] Zhang C Y, Xu Y, Liu J, et al. Lighting up silicon nanoparticles with Mie resonances[J]. Nature Communications, 2018, 9: 2964.

    [51] Feng T H, Xu Y, Zhang W, et al. Ideal magnetic dipole scattering[J]. Physical Review Letters, 2017, 118(17): 173901.

    [52] Chen L, Li G C, Liu G Y, et al. Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod[J]. The Journal of Physical Chemistry C, 2013, 117(39): 20146–20153.

    [53] Taylor A B, Siddiquee A M, Chon J W M. Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion[J]. ACS Nano, 2014, 8(12): 12071–12079.

    [54] Anderson P W. Absence of diffusion in certain random lattices[J]. Physical Review, 1958, 109(5): 1492–1505.

    [55] Xu H X, Bjerneld E J, K ll M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Physical Review Letters, 1999, 83(21): 4357–4360.

    [56] Ghenuche P, Cherukulappurath S, Taminiau T H, et al. Spectroscopic mode mapping of resonant plasmon nanoantennas[J]. Physical Review Letters, 2008, 101(11): 116805.

    [57] Viarbitskaya S, Teulle A, Marty R, et al. Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms[J]. Nature Materials, 2013, 12(5): 426–432.

    [58] Li J X, Xu Y, Dai Q F, et al. Manipulating light–matter interaction in a gold nanorod assembly by plasmonic coupling[J]. Laser & Photonics Reviews, 2016, 10(5): 826–834.

    [59] Zhang Q M, Xia Z L, Cheng Y B, et al. High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites[J]. Nature Communications, 2018, 9: 1183.

    [60] Ouyang X, Xu Y, Feng Z W, et al. Polychromatic and porized multilevel optical data storage[J]. Nanoscale, 2019, 11(5): 2447–2452.

    CLP Journals

    [1] JIN Xin, HU Ying. Detection of Vehicle Crews Based on Modified Faster R-CNN[J]. Infrared Technology, 2020, 42(11): 1103

    Ouyang Xu, Xu Yi, Xian Mingcong, Cao Yaoyu, Dai Qiaofeng, Li Xiangping, Lan Sheng. Encoding disorder gold nanorods for multi-dimensional optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 1
    Download Citation