[1] M J LEVENE, J KORLACH, S W TURNER et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science, 299, 682-686(2003).
[2] T MIYAKE, T TANII, H SONOBE et al. Real-time imaging of single-molecule fluorescence with a zero-mode waveguide for the analysis of Protein-Protein interaction. Analytical Chemistry, 80, 6018-6022(2008).
[3] S ARDUI, A AMEUR, J R VERMEESCH et al. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Research, 46, 2159-2168(2018).
[4] S H KIM. TIRF-based single-molecule detection of the RecA presynaptic filament dynamics. Methods in Enzymology, 600, 233-253(2018).
[5] N AKKILIC, S GESCHWINDNER, F HÖÖK. Single-molecule biosensors: Recent advances and applications. Biosensors and Bioelectronics, 151, 111944(2020).
[6] A B TAYLOR, P ZIJLSTRA. Single-molecule plasmon sensing: current status and future prospects. ACS Sensors, 2, 1103-1122(2017).
[7] S PATRA, M BAIBAKOV, J B CLAUDE et al. Surface passivation of zero-mode waveguide nanostructures: benchmarking protocols and fluorescent labels. Scientific Reports, 10, 5235(2020).
[8] J LARKIN, R Y HENLEY, V JADHAV et al. Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nature Nanotechnology, 12, 1169-1175(2017).
[9] A BARULIN, J B CLAUDE, S PATRA et al. Deep ultraviolet plasmonic enhancement of single protein autofluorescence in zero-mode waveguides. Nano Letters, 19, 7434-7442(2019).
[10] AAL MASUD, W E MARTIN, F H MOONSCHI et al. Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement. Nanoscale Advances, 2, 1894-1903(2020).
[11] Y KURMOO, A L HOOK, D HARVEY et al. Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections. Biomaterials Science, 8, 1464-1477(2020).
[12] X ZAMBRANA-PUYALTO, P PONZELLINI, N MACCAFERRI et al. A hybrid metal-dielectric zero mode waveguide for enhanced single molecule detection. Chemical Communications (Cambridge, England), 55, 9725-9728(2019).
[13] Y ZHAO, D CHEN, H YUE et al. Dark-field illumination on zero-mode waveguide/microfluidic hybrid chip reveals T4 replisomal protein interactions. Nano Letters, 14, 1952-1960(2014).
[14] V P BESSMELTSEV, P S ZAVYALOV, V P KOROLKOV et al. Diffractive focusing fan-out element for the parallel DNA sequencer. Optoelectronics, 53, 457-465(2017).
[15] 15刘全, 黄爽爽, 鲁金超, 等. 用于飞秒激光制备光纤光栅的相位掩模研制[J]. 光学 精密工程, 2020, 28(4): 844-850.LIUQ, HUANGSH SH, LUJ CH, et al. Phase mask for fabrication of fiber Bragg gratings by femtosecond laser[J]. Opt. Precision Eng., 2020, 28(4): 844-850. (in Chinese)
[16] 16计吉焘, 翟雨生, 吴志鹏, 等. 基于周期性光栅结构的表面等离激元探测[J]. 光学 精密工程, 2020, 28(3): 526-534. doi: 10.3788/ope.20202803.0526JIJ T, ZHAIY SH, WUZH P, et al. Detection of surface plasmons based on periodic grating structure[J]. Opt. Precision Eng., 2020, 28(3): 526-534. (in Chinese). doi: 10.3788/ope.20202803.0526
[17] 17王汉斌, 杨依枫, 袁志军, 等. 光纤激光光谱合束及光栅热效应研究进展[J]. 强激光与粒子束, 2020, 32(12): 29-48. doi: 10.11884/HPLPB202032.200240WANGH B, YANGY F, YUANZH J, et al. Research progress on fiber laser spectral beam combining system and grating thermal analysis[J]. High Power Laser and Particle Beams, 2020, 32(12): 29-48. (in Chinese). doi: 10.11884/HPLPB202032.200240
[18] 18宁永慧, 刘辉, 赵庆磊, 等. 大面阵高帧频CMOS成像电子学系统设计[J]. 光学 精密工程, 2019, 27(5): 1167-1177. doi: 10.3788/ope.20192705.1167NINGY H, LIUH, ZHAOQ L, et al. High-frame frequency imaging system of large area CMOS image sensor[J]. Opt. Precision Eng., 2019, 27(5): 1167-1177. (in Chinese). doi: 10.3788/ope.20192705.1167