• Opto-Electronic Engineering
  • Vol. 45, Issue 6, 170737 (2018)
Zhang Yanshan1、*, Pang Dongdong2, Ma Pengge1, Wang Zhongyong2, and Di Jinhong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2018.170737 Cite this Article
    Zhang Yanshan, Pang Dongdong, Ma Pengge, Wang Zhongyong, Di Jinhong. Fractional magnetic resonance imaging based on inhomogeneous main magnetic field[J]. Opto-Electronic Engineering, 2018, 45(6): 170737 Copy Citation Text show less
    References

    [1] Fang S, Wu W C, Ying K, et al. A new fast magnetic resonance imaging method based on variabledensity spiral data acquisition and Bregman iterative reconstruction[J]. Acta Physica Sinica, 2013, 62(4): 048702.

    [2] Shen H J. Highly efficient compressed sensing magnetic resonance imaging based on compound regularization[J]. Computer and Modernization, 2016(5): 39–45, 50.

    [3] Guo X Y. Research of MRI Real-time Signal Receiving and Image Reconstruction[D]. Beijing: Beijing University of Chemical Technology, 2016.

    [4] Somasundaram K, Gayathri S P. Brain segmentation in magnetic resonance images using fast Fourier transform[ C]//International Conference on Emerging Trends in Science, Engineering and Technology, 2012: 164–168.

    [5] Tao R, Deng B, Wang Y. Fractional Fourier Transform and Its Applications[M]. Beijing: Tsinghua University Press, 2009.

    [6] Hou Y G, Guo W, Li X S. Realization of discrete fractional Fourier transform based on a newly commuting matrix[J]. Signal Processing, 2010, 26(4): 569–572.

    [7] Yang F X. Image encryption algorithm based on fractional Fourier transform[C]//Proceedings of the 5th International Conference on Computational and Information Sciences, 2013: 705–708.

    [8] Tao R, Meng X Y, Wang Y. Image encryption with multiorders of fractional Fourier transforms[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(4): 734–738.

    [9] Pan W, Qin K H, Chen Y. An adaptable-multilayer fractional fourier transform approach for image registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 400–414.

    [10] Li B Z, Tao R, Xu T Z, et al. The Poisson sum formulae associated with the fractional Fourier transform[J]. Signal Processing, 2009, 89(5): 851–856.

    [11] Dong Y Q, Tao R, Zhou S Y, et al. SAR moving target detection and imaging based on fractional Fourier transform[J]. Acta Armamentarii, 1999, 20(2): 132–136.

    [12] Zhang J J, Jiang Y S, He Y T, et al. Performance analysis of fractional Fourier transform optical imaging based on fractional Fourier-domain filtering[J]. Acta Optica Sinica, 2011, 31(11): 99–106.

    [13] Chen Y, Zhao H C, Chen S, et al. Imaging algorithm for missile- borne SAR using the fractional Fourier transform[J]. Acta Physica Sinica, 2014, 63(11): 118403.

    [14] Luo Z K, Wang H L, Zhou K J, et al. Combined constellation rotation with weighted FRFT for secure transmission in polarization modulation based dual-polarized satellite communications[ J]. IEEE Access, 2017, 5: 27061–27073.

    Zhang Yanshan, Pang Dongdong, Ma Pengge, Wang Zhongyong, Di Jinhong. Fractional magnetic resonance imaging based on inhomogeneous main magnetic field[J]. Opto-Electronic Engineering, 2018, 45(6): 170737
    Download Citation