[1] Kasparian J, Sauerbrey R, Chin S L. The critical laser intensity of self-guided light filaments in air[J]. Applied Physics B, 71, 877-879(2000).
[2] Tzortzakis S, Franco M A, André Y B et al. Formation of a conducting channel in air by self-guided femtosecond laser pulses[J]. Physical Review E, 60, R3505-R3507(1999).
[3] Tzortzakis S, Prade B, Franco M et al. Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air[J]. Optics Communications, 181, 123-127(2000).
[4] Daigle J F, Kosareva O, Panov N et al. A simple method to significantly increase filaments' length and ionization density[J]. Applied Physics B, 94, 249-257(2009).
[5] Danielle R, Matthieu B, Martin R et al. Transition from linear- to nonlinear-focusing regime of laser filament plasma dynamics[J]. Journal of Applied Physics, 124, 53103(2018).
[6] Rodriguez M, Sauerbrey R, Wille H et al. Triggering and guiding megavolt discharges by use of laser-induced ionized filaments[J]. Optics Letters, 27, 772-774(2002).
[7] Théberge F, Châteauneuf M, Ross V et al. Ultrabroadband conical emission generated from the ultraviolet up to the far-infrared during the optical filamentation in air[J]. Optics Letters, 33, 2515-2517(2008).
[8] Schimmel G, Produit T, Mongin D et al. Free space laser telecommunication through fog[J]. Optica, 5, 1338-1341(2018).
[9] Rostami S, Chini M, Lim K et al. Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments[J]. Scientific Reports, 6, 20363(2016).
[10] Méjean G, Kasparian J, Salmon E et al. Towards a supercontinuum-based infrared lidar[J]. Applied Physics B, 77, 357-359(2003).
[11] Jeon C, Harper D, Lim K et al. Interaction of a single laser filament with a single water droplet[J]. Journal of Optics, 17, 055502(2015).
[12] Kasparian J, Rodriguez M, Méjean G et al. White-light filaments for atmospheric analysis[J]. Science, 301, 61-64(2003).
[13] Wolf J P. Short-pulse lasers for weather control[J]. Reports on Progress in Physics, 81, 026001(2018).
[14] Thul D, Bernath R, Bodnar N et al. The mobile ultrafast high energy laser facility - A new facility for high-intensity atmospheric laser propagation studies[J]. Optics and Lasers in Engineering, 140, 106519(2021).
[15] Xu H L, Cheng Y, Chin S L et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 9, 275-293(2015).
[16] Parigger C G, Helstern C M, Jordan B S et al. Laser-plasma spatiotemporal cyanide spectroscopy and applications[J]. Molecules, 25, 615(2020).
[17] Ferus M, Pietrucci F, Saitta A M et al. Prebiotic synthesis initiated in formaldehyde by laser plasma simulating high-velocity impacts[J]. Astronomy & Astrophysics, 626, A52(2019).
[18] He Y F, Preissing P, Steuer D et al. Zero-dimensional and pseudo-one-dimensional models of atmospheric-pressure plasma jets in binary and ternary mixtures of oxygen and nitrogen with helium background[J]. Plasma Sources Science and Technology, 30, 105017(2021).
[19] Pavlovich M J, Clark D S, Graves D B. Quantification of air plasma chemistry for surface disinfection[J]. Plasma Sources Science and Technology, 23, 065036(2014).
[20] Wu D M, Deng L L, Liu Y Z et al. Comparisons of the effects of different drying methods on soil nitrogen fractions: Insights into emissions of reactive nitrogen gases (HONO and NO)[J]. Atmospheric and Oceanic Science Letters, 13, 224-231(2020).
[21] Herron J T. Modeling studies of the formation and destruction of NO in pulsed barrier discharges in nitrogen and air[J]. Plasma Chemistry and Plasma Processing, 21, 581-609(2001).
[22] Petit Y, Henin S, Kasparian J et al. Production of ozone and nitrogen oxides by laser filamentation[J]. Applied Physics Letters, 97, 021108(2010).
[23] Camino A, Li S W, Hao Z Q et al. Spectroscopic determination of NO2, NO3, and O3 temporal evolution induced by femtosecond filamentation in air[J]. Applied Physics Letters, 106, 021105(2015).