• Chinese Journal of Lasers
  • Vol. 49, Issue 2, 0202017 (2022)
Xiaoyu Shi, Daosheng Wen, Shouren Wang*, Gaoqi Wang, and Mingyuan Zhang
Author Affiliations
  • School of Mechanical Engineering, University of Jinan, Jinan, Shandong 250022, China
  • show less
    DOI: 10.3788/CJL202149.0202017 Cite this Article Set citation alerts
    Xiaoyu Shi, Daosheng Wen, Shouren Wang, Gaoqi Wang, Mingyuan Zhang. Microstructures and High-Temperature Friction and Wear Properties of Laser Cladded Fe-Ni-Cr Gradient Composite Coating for Brake Disc[J]. Chinese Journal of Lasers, 2022, 49(2): 0202017 Copy Citation Text show less
    References

    [1] Jian Q F, Shui Y. Numerical and experimental analysis of transient temperature field of ventilated disc brake under the condition of hard braking[J]. International Journal of Thermal Sciences, 122, 115-123(2017).

    [2] Zhang C, Ma L, Ding H H et al. Effect of brake parameters on friction properties of brake materials in low temperature environment[J]. Journal of Mechanical Engineering, 57, 230-239(2021).

    [3] Afkhami S, Dabiri M, Alavi S H et al. Fatigue characteristics of steels manufactured by selective laser melting[J]. International Journal of Fatigue, 122, 72-83(2019).

    [4] Xiang Z Y, Fan Z Y, Liu Q A et al. Effect of brake pad friction block shape on tribological behavior of brake interface of high-speed train[J]. Tribology, 41, 95-104(2021).

    [5] Xiao S, Jiang L X, Jiang W et al. Application and prospect of composite materials in rail transit vehicles[J]. Journal of Traffic and Transportation Engineering, 21, 154-176(2021).

    [6] Sun X, Shi J, Shui G Y et al. Study on casting process of cast steel brake discs for high speed train[J]. Foundry, 69, 1348-1355(2020).

    [7] Zhang T C, Lin Y, Liu S Y et al. Microstructure and properties of Fe-Cr-Ni alloy by laser additive manufacturing[J]. Hot Working Technology, 48, 102-106(2019).

    [8] Cai Q, Chen W J, Chen X N et al. Microstructure and mechanical properties of Fe-Cr-Ni alloy cladding layer on EA4T steel by laser cladding[J]. Journal of Xihua University (Natural Science Edition), 36, 33-37(2017).

    [9] Wu P, Lei S, Li S et al. Study of microstructure and properties of laser cladding coatings on 40Cr rollers[J]. Journal of Heilongjiang University of Technology (Comprehensive Edition), 20, 47-52(2020).

    [10] Siddiqui A A, Dubey A K. Recent trends in laser cladding and surface alloying[J]. Optics & Laser Technology, 134, 106619(2021).

    [11] Chen J F, Li X P, Xue Y P. Friction and wear properties of laser cladding Fe901 alloy coating on 45 steel surface[J]. Chinese Journal of Lasers, 46, 0502001(2019).

    [12] Wang Q Y, Pei R, Liu S et al. Microstructure and corrosion behavior of different clad zones in multi-track Ni-based laser-clad coating[J]. Surface and Coatings Technology, 402, 126310(2020).

    [13] Wang Y C, Shi J. Influence of laser scan speed on micro-segregation in selective laser melting of an iron-carbon alloy: a multi-scale simulation study[J]. Procedia Manufacturing, 26, 941-951(2018).

    [14] Shen C Y, Chu G. A new method for quantitative X-ray diffraction phase analysis[J]. Journal of Instrumental Analysis, 22, 80-83(2003).

    [15] Hao Y B, Wang J, Yang P et al. Microstructures and properties of tin-based babbitt metal prepared by laser cladding deposition[J]. Chinese Journal of Lasers, 47, 0802009(2020).

    [16] Zhou S F, Xu Y B, Liao B Q et al. Effect of laser remelting on microstructure and properties of WC reinforced Fe-based amorphous composite coatings by laser cladding[J]. Optics & Laser Technology, 103, 8-16(2018).

    [17] Muvvala G, Karmakar P D, Nath A K. In-process detection of microstructural changes in laser cladding of in situ Inconel 718/TiC metal matrix composite coating[J]. Journal of Alloys and Compounds, 740, 545-558(2018).

    [18] Juan Y F, Li J, Jiang Y Q et al. Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings[J]. Applied Surface Science, 465, 700-714(2019).

    [19] Sun N, Fang Y, Zhang J Q et al. Effect of WC-12Co addition on microstructure and wear resistance of Inconel 625 matrix composites prepared by laser cladding[J]. Chinese Journal of Lasers, 48, 0602106(2021).

    [20] Bartkowski D, Bartkowska A. Wear resistance in the soil of Stellite-6/WC coatings produced using laser cladding method[J]. International Journal of Refractory Metals and Hard Materials, 64, 20-26(2017).

    [21] Yu J, Song B, Liu Y C. Microstructure and wear behaviour of Ni-based alloy coated onto grey cast iron using a multi-step induction cladding process[J]. Results in Physics, 10, 339-345(2018).

    [22] Xie S Y, Li R D, Yuan T C et al. Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure[J]. Optics & Laser Technology, 99, 374-381(2018).

    [23] Zhang C H, Wang X X, Chang M C et al. Effects of yield strength of weld metal and material strain hardening on prediction accuracy of welding residual stress and deformation in a Q345 steel joint[J]. Journal of Mechanical Engineering, 57, 160-168(2021).

    [24] Yu T, Zhang Z X, Rao X X et al. High-temperature wear behavior of laser-cladding Stellite 6 coating[J]. Laser & Optoelectronics Progress, 56, 141403(2019).

    Xiaoyu Shi, Daosheng Wen, Shouren Wang, Gaoqi Wang, Mingyuan Zhang. Microstructures and High-Temperature Friction and Wear Properties of Laser Cladded Fe-Ni-Cr Gradient Composite Coating for Brake Disc[J]. Chinese Journal of Lasers, 2022, 49(2): 0202017
    Download Citation