[1] She C Y, Friedman J S. Atmospheric Lidar Fundamentals[M]. London: Cambridge University Press, 2022.
[2] Chu X Z, Papen G C. Resonance Fluescence Lidar f Measurements of the dle Upper Atmosphere[M]Fujii T, Fukuchi T. Laser Remote Sensing. Boca Raton: CRC Press, 2005: 197450.
[3] Z A Yan, X Hu, W J Guo, . Near space Doppler lidar techniques and applications (Invited). Infrared and Laser Engineering, 50, 20210100(2021).
[4] X Chu, C S Gardner, X Li, et al. Vertical transport of sensible heat and meteoric Na by the complete temporal spectrum of gravity waves in the MLT above McMurdo (77.84°S, 166.67°E), Antarctica. Journal of Geophysical Research: Atmospheres, 127, e2021JD035728(2022).
[5] T Li, X Fang, W Liu, et al. Narrowband sodium lidar for the measurements of mesopause region temperature and wind. Applied Optics, 51, 5401-5411(2012).
[6] D A Krueger, C Y She, T Yuan. Retrieving mesopause temperature and line-of-sight wind from full-diurnal-cycle Na lidar observations. Applied Optics, 54, 9469-9489(2015).
[7] Y Xia, L F Du, X W Cheng, et al. Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region. Optics Express, 25, 5264-5278(2017).
[8] T D Kawahara, S Nozawa, N Saito, et al. Sodium temperature/wind lidar based on laser-diode-pumped Nd: YAG lasers deployed at Tromsø, Norway (69.6 N, 19.2 E). Optics Express, 25, A491-A501(2017).
[9] C Li, D C Wu, Q Deng, et al. Simulation and optimization of Fe resonance fluorescence lidar performance for temperature-wind measurement. Optics Express, 30, 13278-13293(2022).
[10] B Kaifler, C Büdenbender, P Mahnke, et al. Demonstration of an iron fluorescence lidar operating at 372 nm wavelength using a newly-developed Nd: YAG laser. Optics Letters, 42, 2858-2861(2017).
[11] C Lemmerz, O Lux, O Reitebuch, et al. Frequency and timing stability of an airborne injection-seeded Nd: YAG laser system for direct-detection wind lidar. Applied Optics, 56, 9057-9068(2017).
[12] Nicklaus K, Mh V, Hoefer M, et al. Frequency stabilization of Qswitched Nd: YAG oscillats f airbne spacebne lidar systems[C]Solid State Lasers XVI: Technology Devices. SPIE, 2007, 6451: 387398.
[13] Zhou J. Study of injectionseeded single frequency all solidstate laser[D]. Beijing: University of Chinese Academy of Sciences, 2007. (in Chinese)
[14] Wang J, Zhu R, Lu T, et al. Conductively cooled single frequency Nd: YAG laser f remote sensing[C]International Symposium on Photoelectronic Detection Imaging 2011: Laser Sensing Imaging; Biological Medical Applications of Photonics Sensing Imaging. SPIE, 2011, 8192: 832839.
[15] Y Gao, J Zhang, H Zang, et al. Stable single-mode operation of injection-seeded Q-switched Nd: YAG laser by sine voltage modulation. Chinese Optics Letters, 14, 071401(2016).
[16] C Y She, J R Yu. Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region. Geophysical Research Letters, 21, 1771-1774(1994).
[17] C S Gardner, F A Vargas. Optimizing three-frequency Na, Fe, and He lidars for measurements of wind, temperature, and species density and the vertical fluxes of heat and constituents. Applied Optics, 53, 4100-4116(2014).
[18] S W Henderson, E H Yuen, E S Fry. Fast resonance-detection technique for single-frequency operation of injection-seeded Nd: YAG lasers. Optics Letters, 11, 715-717(1986).
[19] J D Xie, L P Yan, B Y Chen, . Automatic offset-frequency locking of external cavity diode laser in wide wavelength range. Optics and Precision Engineering, 29, 211-219(2021).