• Infrared and Laser Engineering
  • Vol. 48, Issue 11, 1113005 (2019)
Chen Huaiyu1、2、3、* and Yin Dayi1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201948.1113005 Cite this Article
    Chen Huaiyu, Yin Dayi. High-precision systematic error compensation method for star centroiding of fine guidance sensor[J]. Infrared and Laser Engineering, 2019, 48(11): 1113005 Copy Citation Text show less
    References

    [1] Sabelhaus P A, Campbell D, Clampin M, et al. Overview of the James Webb Space Telescope(JWST) project[C]//UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II. International Society for Optics and Photonics, 2005, 5899: 58990P.

    [2] Zheng S H, Evans C. Optical design of the JWST fine guider sensor[C]// Proceedings of SPIE-The International Society for Optical Engineering, 2010,77860: 77860Y.

    [3] Meza L, Tung F, Anandakrishnan S, et al. Line of sight stabilization of james webb space telescope[C]//27th Annual AAS Guidance and Control Conference, 2005.

    [4] Jia Hui, Yang Jiankun, Li Xiujian, et al. Systematic error analysis and compensation for high accuracy star centroid estimation of star tracker[J]. Science in China Series E: Technological Sciences, 2010, 53(11): 3145-3152. (in Chinese)

    [5] Wei Xinguo, Xu Jia, Zhang Guangjun. S-curve error compensation of centroiding location for star sensors[J]. Optics and Precision Engineering, 2013, 21(4): 849-857. (in Chinese)

    [6] Jiang Liang, Zhang Yu, Zhang Liguo, et al. Effect of point spread functions on star centroid error analysis[J]. Infrared and Laser Engineering, 2015, 44(11): 3437-3445. (in Chinese)

    [7] Rufino G, Accardo D. Enhancement of the centroiding algorithm for star tracker measure refinement[J]. Acta Astronautica, 2003, 53(2): 135-147.

    [8] Tang Shengjin, Guo Xiaosong, Zhou Zhaofa, et al. Modified systematic error compensation algorithm for star centroid sub-pixel detection[J]. Infrared and Laser Engineering, 2013,42(6): 1502-1506.(in Chinese)

    [9] Yang Jun, Zhang Tao, Song Jingyan, et al. High accuracy error compensation algorithm for star image sub-pixel subdivision location[J]. Optics and Precision Engineering, 2010, 18(4):238-246.(in Chinese)

    [10] Yang J, Liang B, Zhang T, et al. A novel systematic error compensation algorithm based on least squares support vector regression for star sensor image centroid estimation[J]. Sensors, 2011, 11(12): 7341-7363.

    [11] Liu Nannan, Xu Shuyan, Hu Jun, et al. Hyper accuracy star location algorithm based on nonsubsampled contourlet transform and mapped least squares support vector machine[J]. Acta Optica Sinica, 2013, 33(5): 0512001. (in Chinese)

    [12] Stanton R H, Alexander J W, Dennison E W, et al. Optical tracking using charge-coupled devices[J]. Optical Engineering, 1987, 26(9): 930-938.

    [13] Hancock B R, Stirbl R C, Cunningham T J, et al. CMOS active pixel sensor specific performance effects on star tracker/imager position accuracy[C]//Functional Integration of Opto-electro-mechanical Devices & Systems. International Society for Optics and Photonics, 2001.

    [14] Tan Di, Zhang Xin,Wu Yanxiong, et al.Analysis of effect of optical aberration on star centroid location error[J]. Infrared and Laser Engineering, 2017, 46(2): 0217004. (in Chinese)

    [15] Cattermole K W. The Fourier Transform and Its Applications[M]. US: Stanford University, 2000.

    [16] Rufino G, Accardo D. Enhancement of the centroiding algorithm for star tracker measure refinement[J]. Acta Astronautica, 2003, 53(2): 135-147.

    [17] Weiss K, Khoshgoftaar T M, Wang D D. A survey of transfer learning[J]. Journal of Big Data, 2016, 3(1): 9.

    Chen Huaiyu, Yin Dayi. High-precision systematic error compensation method for star centroiding of fine guidance sensor[J]. Infrared and Laser Engineering, 2019, 48(11): 1113005
    Download Citation