• Laser & Optoelectronics Progress
  • Vol. 62, Issue 11, 1127013 (2025)
Xueshi Guo1,2,*, Fenghao Qiu1,2, Wenqi Li1,2, and Xiaoying Li1,2,**
Author Affiliations
  • 1School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Opto-Electronic Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP250884 Cite this Article Set citation alerts
    Xueshi Guo, Fenghao Qiu, Wenqi Li, Xiaoying Li. Progress of Phase-Locked Control Techniques in Optical Quantum Information (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(11): 1127013 Copy Citation Text show less
    References

    [1] Nielsen M A, Chuang I L[M]. Quantum computation and quantum information(2023).

    [2] Andersen U L, Neergaard-Nielsen J S, van Loock P et al. Hybrid discrete- and continuous-variable quantum information[J]. Nature Physics, 11, 713-719(2015).

    [3] Barbieri M. Optical quantum metrology[J]. PRX Quantum, 3, 010202(2022).

    [4] Guest C C, Gaylord T K. Phase stabilization system for holographic optical data processing[J]. Applied Optics, 24, 2140-2144(1985).

    [5] Zhao Y, Tong S F, Song Y S et al. Research progress of optical phase locked loop in space laser communication[J]. Laser & Optoelectronics Progress, 52, 080002(2015).

    [6] Atia W A, Davis C C. A phase-locked shear-force microscope for distance regulation in near-field optical microscopy[J]. Applied Physics Letters, 70, 405-407(1997).

    [7] Aggarwal V, Mao M, O’Reilly U M. A self-tuning analog proportional-integral-derivative (PID) controller[C], 12-19(2006).

    [8] Pantelić D V, Panić B M, Kovac̆ević A G. Digital control of an iodine stabilized He-Ne laser by using a personal computer and a simple electronic system[J]. Review of Scientific Instruments, 74, 3155-3159(2003).

    [9] Sparkes B M, Chrzanowski H M, Parrain D P et al. A scalable, self-analyzing digital locking system for use on quantum optics experiments[J]. Review of Scientific Instruments, 82, 075113(2011).

    [10] Neumann D B, Rose H W. Improvement of recorded holographic fringes by feedback control[J]. Applied Optics, 6, 1097(1967).

    [11] Roztocki P, MacLellan B, Islam M et al. Arbitrary phase access for stable fiber interferometers[J]. Laser & Photonics Reviews, 15, 2000524(2021).

    [12] Johnson G W, Leiner D C, Moore D T. Phase-locked interferometry interferometry[J]. Proceedings of SPIE, 126, 152-160(1977).

    [13] Lundin P, Guan Z G, Svanberg S. Active feedback regulation of a Michelson interferometer to achieve zero-background absorption measurements[J]. Applied Optics, 50, 373-378(2011).

    [14] Wang H L, Marino A M, Jing J T. Experimental implementation of phase locking in a nonlinear interferometer[J]. Applied Physics Letters, 107, 121106(2015).

    [15] Liao R Y, Tian H C, Feng T L et al. Active f-to-2f interferometer for record-low jitter carrier-envelope phase locking[J]. Optics Letters, 44, 1060-1063(2019).

    [16] Wu S H, Huang W F, Yang P Y et al. Arbitrary phase-locking in Mach-Zehnder interferometer[J]. Optics Communications, 442, 148-151(2019).

    [17] Li W Q, Deng Q Q, Guo X S et al. Acousto-optic modulator-based bi-frequency interferometer for quantum technology[J]. Chinese Optics Letters, 22, 022703(2024).

    [18] Enloe L H, Rodda J L. Laser phase-locked loop[J]. Proceedings of the IEEE, 53, 165-166(1965).

    [19] Abramovitch D. Phase-locked loops: a control centric tutorial[C], 1-15(2002).

    [20] Kazovsky L. Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements[J]. Journal of Lightwave Technology, 4, 182-195(1986).

    [21] Lu M Z, Park H C, Bloch E et al. An integrated heterodyne optical phase-locked loop with record offset locking frequency[C], Tu2H.4(2014).

    [22] Bordonalli A C, Walton C, Seeds A J. High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop[J]. Journal of Lightwave Technology, 17, 328-342(1999).

    [23] Kasai K, Hongo J, Yoshida M et al. Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers[J]. IEICE Electronics Express, 4, 77-81(2007).

    [24] Shahriar M S, Turukhin A V, Liptay T et al. Demonstration of injection locking a diode laser using a filtered electro-optic modulator sideband[J]. Optics Communications, 184, 457-462(2000).

    [25] Wang F D, Ma W X, Mei F et al. Simple, low-cost, and well-performing optical phase-locked loop for frequency and phase locking of semiconductor lasers[J]. Applied Optics, 62, 7169-7174(2023).

    [26] Xu Z X, Zhang X, Huang K K et al. A digital optical phase-locked loop for diode lasers based on field programmable gate array[J]. Review of Scientific Instruments, 83, 093104(2012).

    [27] Savory S J. Digital coherent optical receivers: algorithms and subsystems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 16, 1164-1179(2010).

    [28] Steele R C. Optical phase-locked loop using semiconductor laser diodes[J]. Electronics Letters, 19, 69-71(1983).

    [29] Kazovsky L G, Atlas D A. A 1320-nm experimental optical phase-locked loop: performance investigation and PSK homodyne experiments at 140 Mb/s and 2 Gb/s[J]. Journal of Lightwave Technology, 8, 1414-1425(1990).

    [30] Gliese U, Nielsen T N, Bruun M et al. A wideband heterodyne optical phase-locked loop for generation of 3‒18 GHz microwave carriers[J]. IEEE Photonics Technology Letters, 4, 936-938(1992).

    [31] Höckel D, Scholz M, Benson O. A robust phase-locked diode laser system for EIT experiments in cesium[J]. Applied Physics B, 94, 429-435(2009).

    [32] Ristic S, Bhardwaj A, Rodwell M J et al. An optical phase-locked loop photonic integrated circuit[J]. Journal of Lightwave Technology, 28, 526-538(2010).

    [33] Fice M J, Chiuchiarelli A, Ciaramella E et al. Homodyne coherent optical receiver using an optical injection phase-lock loop[J]. Journal of Lightwave Technology, 29, 1152-1164(2011).

    [34] Balakier K, Ponnampalam L, Fice M J et al. Integrated semiconductor laser optical phase lock loops[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1500112(2018).

    [35] Wang T B, Wen X W, Yin C P et al. The transmission characteristics of surface plasmon polaritons in ring resonator[J]. Optics Express, 17, 24096-240101(2009).

    [36] Willke B, Uehara N, Gustafson E K et al. Spatial and temporal filtering of a 10-W Nd∶YAG laser with a Fabry-Perot ring-cavity premode cleaner[J]. Optics Letters, 23, 1704-1706(1998).

    [37] Drever R W P, Hall J L, Kowalski F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983).

    [38] Young B C, Cruz F C, Itano W M et al. Visible lasers with subhertz linewidths[J]. Physical Review Letters, 82, 3799-3802(1999).

    [39] Webster S A, Oxborrow M, Gill P. Subhertz-linewidth Nd∶YAG laser[J]. Optics Letters, 29, 1497-1499(2004).

    [40] Alnis J, Matveev A, Kolachevsky N et al. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities[J]. Physical Review A, 77, 053809(2008).

    [41] Jiang Y Y, Ludlow A D, Lemke N D et al. Making optical atomic clocks more stable with 10-16-level laser stabilization[J]. Nature Photonics, 5, 158-161(2011).

    [42] Häfner S, Falke S, Grebing C et al. 8×10-17 fractional laser frequency instability with a long room-temperature cavity[J]. Optics Letters, 40, 2112-2115(2015).

    [43] Oelker E, Hutson R B, Kennedy C J et al. Demonstration of 4.8×10-17 stability at 1 s for two independent optical clocks[J]. Nature Photonics, 13, 714-719(2019).

    [44] Yan C Z, Shi H S, Yao Y et al. Automatic, long-term frequency-stabilized lasers with sub-hertz linewidth and 10-16 frequency instability[J]. Chinese Optics Letters, 20, 070201(2022).

    [45] Heurs M, Petersen I R, James M R et al. Homodyne locking of a squeezer[C], QFA3(2010).

    [46] Vahlbruch H, Mehmet M, Danzmann K et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 117, 110801(2016).

    [47] Suleiman I, Nielsen J H, Guo X et al. 40 km fiber transmission of squeezed light measured with a real local oscillator[J]. Quantum Science and Technology, 7, 045003(2022).

    [48] Laudenbach F, Schrenk B, Pacher C et al. Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator[J]. Quantum, 3, 193(2019).

    [49] Huang D, Fang J, Wang C et al. A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution[J]. Chinese Physics Letters, 30, 114209(2013).

    [50] Chi Y M, Qi B, Zhu W et al. A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution[J]. New Journal of Physics, 13, 013003(2011).

    [51] Gu M L, Weedbrook C, Menicucci N C et al. Quantum computing with continuous-variable clusters[J]. Physical Review A, 79, 062318(2009).

    [52] Pfister O. Continuous-variable quantum computing in the quantum optical frequency comb[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 012001(2020).

    [53] Lvovsky A I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography[J]. Journal of Optics B: Quantum and Semiclassical Optics, 6, S556-S559(2004).

    [54] Cho S B, Noh T G. Stabilization of a long-armed fiber-optic single-photon interferometer[J]. Optics Express, 17, 19027-19032(2009).

    [55] Suleiman I, Nielsen J A H, Guo X et al. 40 km fiber transmission of squeezed light measured with a real local oscillator[J]. Quantum Science and Technology, 7, 045003(2022).

    [56] McKenzie K, Grosse N, Bowen W P et al. Squeezing in the audio gravitational-wave detection band[J]. Physical Review Letters, 93, 161105(2004).

    [57] McKenzie K, Mikhailov E E, Goda K et al. Quantum noise locking[J]. Journal of Optics B: Quantum and Semiclassical Optics, 7, S421-S428(2005).

    [58] Deng Q Q, Li W Q, Guo X S et al. Frequency tuning of a squeezed vacuum state using interferometric enhanced acousto-optic effect[J]. Optics Express, 32, 39632-39642(2024).

    [59] Ou Z Y, Li X Y. Quantum SU(1, 1) interferometers: basic principles and applications[J]. APL Photonics, 5, 080902(2020).

    [60] Cook R L, Martin P J, Geremia J M. Optical coherent state discrimination using a closed-loop quantum measurement[J]. Nature, 446, 774-777(2007).

    [61] Hacker B, Günthner K, Rößler C et al. Phase-locking an interferometer with single-photon detections[J]. New Journal of Physics, 25, 113007(2023).

    [62] Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing[J]. Theoretical Computer Science, 560, 7-11(2014).

    [63] Kumar M, Mondal B. A brief review on quantum key distribution protocols[J/OL]. Multimedia Tools and Applications, 1-40. https://link.springer.com/article/10.1007/s11042-024-20535-x#citeas

    [64] Lucamarini M, Yuan Z L, Dynes J F et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters[J]. Nature, 557, 400-403(2018).

    [65] Xie Y M, Lu Y S, Weng C X et al. Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference[J]. PRX Quantum, 3, 020315(2022).

    [66] Chin H M, Jain N, Zibar D et al. Machine learning aided carrier recovery in continuous-variable quantum key distribution[J]. NPJ Quantum Information, 7, 20(2021).

    [67] Hajomer A A E, Derkach I, Jain N et al. Long-distance continuous-variable quantum key distribution over 100-km fiber with local local oscillator[J]. Science Advances, 10, eadi9474(2024).

    [68] Li W, Zhang L K, Lu Y C et al. Twin-field quantum key distribution without phase locking[J]. Physical Review Letters, 130, 250802(2023).

    Xueshi Guo, Fenghao Qiu, Wenqi Li, Xiaoying Li. Progress of Phase-Locked Control Techniques in Optical Quantum Information (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(11): 1127013
    Download Citation