• Journal of Innovative Optical Health Sciences
  • Vol. 8, Issue 1, 1540006 (2015)
Brian C. Wilson1、*, Michael S. Patterson2, Buhong Li3, and Mark T. Jarvi1
Author Affiliations
  • 1Department of Medical Biophysics niversity of Toronto/University Health Network Toronto, Ontario M5G 1L7, Canada
  • 2Juravinski Cancer Centre and McMaster University Hamilton, Ontario L8V 5C2, Canada
  • 3MOE Key Laboratory of OptoElectronic Science and Technology for Medicine Fujian Provincial Key Laboratory for Photonics Technology Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
  • show less
    DOI: 10.1142/s1793545815400064 Cite this Article
    Brian C. Wilson, Michael S. Patterson, Buhong Li, Mark T. Jarvi. Correlation of in vivo tumor response and singlet oxygen luminescence detection in mTHPC-mediated photodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 2015, 8(1): 1540006 Copy Citation Text show less
    References

    [1] P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson and J. Golab, "Photodynamic therapy of cancer: An update," CA Cancer J. Clin. 61, 250–281 (2011).

    [2] I. Ashur, R. Goldschmidt, I. Pinkas, Y. Salomon, G. Szewczyk, T. Sarna, A. Scherz, "Photocatalytic generation of oxygen radicals by the water-soluble bacteriochlorophyll derivative WST11, noncovalently bound to serumalbumin," J. Phys.Chem.A16, 8027– 8037 (2009).

    [3] D. Kessell, J. Reiners Jr., "Light-activated pharmaceuticals: Mechanisms and detection," Isr J. Chem. 52, 674–680 (2012).

    [4] M. T. Jarvi, M. J. Niedre, B. C. Wilson, "Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: Current status and future prospects," Photochem. Photobiol. 82, 1198–1210 (2006).

    [5] S. Hackbarth, J. Schlothauer, A. Preuss, B. R€oder, "New insights to primary photodynamic effects– Singlet oxygen kinetics in living cells," J. Photochem. Photobiol. B 98, 173–179 (2010).

    [6] G. Zheng, J. Chen, K. Ste lova, M. T. Jarvi, B. C. Wilson, "Photodynamic molecular beacon as an activatable photosensitizer based on protease controlled singlet oxygen quenching and activation," Proc. Natl. Acad. Sci. (USA) 104, 8989–8994 (2007).

    [7] C. Yu, T. Canteenwala, M. E. El-ourly, Y. Akari, K. Pritzker, O. Ito, B. C. Wilson, L. Y. Chiang, "E±ciency of singlet oxygen production from selfassembled nanospheres of molecular micelle-like photosensitizers FC4S," J. Med. Chem. 15, 1857– 1864 (2005).

    [8] M. J. Niedre, A. J. Secord, M. S. Patterson, B. C. Wilson, "In Vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy," Cancer Res. 53, 7986– 7994 (2003).

    [9] M. J. Niedre, C. S. Yu, M. S. Patterson, B. C. Wilson, "Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: Validation in normal mouse skin with topical aminolevulinic acid," Br. J. Cancer 92, 298–304 (2005).

    [10] J. C. Schlothauer, S. Hackbarth, L. J ger, K. Drobniewski, H. Patel, S. M. Goran, B. R€oder, "Timeresolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: Comparison of ex vivo application of two photosensitizer formulations," J. Biomed. Opt. 17, 115005 (2012).

    [11] S. Lee, L. Zhu, A. M. Minhaj, M. F. Hinds, D. H. Vu, D. I. Rosen, S. J. Davis, T. Hasan, "Pulsed diode laser-based monitor for singlet molecular oxygen," J. Biomed. Opt. 13, 034010 (2008).

    [12] S. Mallidi, S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis, T. Hasan, "Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema," J. Biomed. Opt. 19, 028001 (2014).

    [13] J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, H. Namba, "Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma," Clin. Cancer Res. 12, 7132– 7139 (2006).

    [14] J. C. Schlothauer, J. Falckenhayn, T. Perna, S. Hackbarth, B. R€oder, "Luminescence investigation of photosensitizer distribution in skin: Correlation of singlet oxygen kinetics with the microarchitecture of the epidermis," J. Biomed. Opt. 18, 115001 (2013).

    [15] M. T. Jarvi, M. J. Niedre, M. S. Patterson, B. C. Wilson, "The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response," Photochem. Photobiol. 87, 223–234 (2011).

    [16] K. K. Wang, S. Mitra, T. H. Foster, "Photodynamic dose does not correlate with long-term tumor response to mTHPC-PDT performed at several druglight intervals," Med. Phys. 35, 3518–3526 (2008).

    [17] M. Ascencio, P. Collinet, M. O. Farine, S. Mordon, "Protoporphyrin IX fluorescence photobleaching is a useful tool to predict the response of rat ovarian cancer following hexaminolevulinate photodynamic therapy," Lasers Surg. Med. 40, 322–341 (2008).

    [18] E. Moriyama, S. K. Bisland, L. Lilge, B. C. Wilson, "Bioluminescence imaging of the response of rat gliosarcoma to ALA-PpIX-mediated photodynamic therapy," Photochem. Photobiol. 80, 241–249 (2004).

    [19] S. Coutier, S. Mitra, L. N. Bezdetnaya, R. M. Parache, I. Georgakoudi, T. H. Foster, F. Guillemin, "Effects of fluence rate on cell survival and photobleaching in meta-tetra-(hydroxyphenyl) chlorine photosensitized Colo 26 multicell tumor spheroids," Photochem. Photobiol. 73, 297–303 (2001).

    [20] D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, W. M. Star, "Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: The effect of light dose and irradiance and the resulting biological effect," Photochem. Photobiol. 67, 140–149 (1998).

    [21] T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, R. Hilf, "Oxygen consumption and diffusion effects in photodynamic therapy," Radiat. Res. 126, 296–303 (1991).

    [22] H. Lin, D. Chen, M. Wang, J. Lin, S. Xie, B. Li, "Influence of pulse height discrimination threshold for photon counting on the accuracy of singlet oxygen luminescence measurement," J. Opt. 13, 125301 (2011).

    [23] A. Mariampillai, "Development of a high resolution microvascular imaging toolkit for optical coherence tomography," PhD Thesis, University of Toronto, Canada (2010).

    [24] H. Lin, Y. Shen, D. Chen, L. Lin, B. C. Wilson, B. Li, S. Xie, "Feasibility study on quantitative measurements of singlet oxygen generation using singlet oxygen sensor green," J. Fluoresc. 23, 41–47 (2013).

    [25] L. Lin, H. Lin, D. Chen, L. Chen, M. Wang, S. Xie, Y. Gu, B. C. Wilson, B. Li, "Direct imaging of singlet oxygen luminescence generated in blood vessels during photodynamic therapy," Proc. SPIE 9129, 912920 (2014).

    [26] N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, R. H. Hadfield, "Singlet oxygen detection with fibre-coupled superconducting nanowire single photon detectors," Opt. Express 21, 5005– 5013 (2013).

    [27] J. Trachtenberg, R. A. Weersink, S. R. Davidson, M. A. Haider, A. Bogaards, M. R. Gertner, A. Evans, A. Scherz, J. Savard, J. L. Chin, B. C. Wilson, M. Elhilali, "Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: A study of escalating light doses," BJU Int. 102, 556– 562 (2008).

    Brian C. Wilson, Michael S. Patterson, Buhong Li, Mark T. Jarvi. Correlation of in vivo tumor response and singlet oxygen luminescence detection in mTHPC-mediated photodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 2015, 8(1): 1540006
    Download Citation