• Journal of Innovative Optical Health Sciences
  • Vol. 6, Issue 3, 1350020 (2013)
P. KOSTERIN1, A. L. OBAID1, and B. M. SALZBERG1、2、*
Author Affiliations
  • 1Department of Neuroscience Perelman School of Medicine University of Pennsylvania Philadelphia, PA 19104
  • 2Department of Physiology Perelman School of Medicine University of Pennsylvania Philadelphia, PA 19104
  • show less
    DOI: 10.1142/s179354581350020x Cite this Article
    P. KOSTERIN, A. L. OBAID, B. M. SALZBERG. GABA UPTAKE BY GAT1 MODULATES LONG-TERM OPTICAL CHANGES FOLLOWING ELECTRICAL STIMULATION OF THE PITUITARY GLAND NEUROINTERMEDIATE LOBE[J]. Journal of Innovative Optical Health Sciences, 2013, 6(3): 1350020 Copy Citation Text show less
    References

    [1] W. H. Oertel, E. Mugnaini, M. L. Tappaz, V. K. Weise, A. L. Dahl, D. E. Schmechel, I. J. Kopin, "Central GABAergic innervation of neurointermediate pituitary lobe: Biochemical and immunocytochemical study in the rat," Proc. Natl. Acad. Sci. USA 79, 675-679 (1982).

    [2] A. Mayerhofer, B. Hohne-Zell, K. Gamel-Didelon, H. Jung, P. Redecker, D. Grube, H. F. Urbanski, B. Gasnier, J. M. Fritschy, M. Gratzl, "Gammaaminobutyric acid (GABA): A para- and/or autocrine hormone in the pituitary," FASEB J. 15, 1089-1091 (2001).

    [3] S. A. Tomiko, P. S. Taraskevich, W. W. Douglas, "GABA acts directly on cells of pituitary pars intermedia to alter hormone output," Nature 301, 706-707 (1983).

    [4] P. S. Taraskevich, S. A. Tomiko, W. W. Douglas, "Electrical stimulation of neurointermediate lobes of mice elicits calcium-dependent output of melanocyte- stimulating hormone," Brain Res. 379, 390-393 (1986).

    [5] B. M. Salzberg, A. L. Obaid, H. Gainer, "Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis," J. Gen. Physiol. 86, 395-411 (1985).

    [6] G. H. Kim, P. Kosterin, A. L. Obaid, B. M. Salzberg, "A mechanical spike accompanies the action potential in mammalian nerve terminals," Biophys. J. 92, 3122-3129 (2007).

    [7] H. Gainer, S. A. Wolfe, Jr., A. L. Obaid, B. M. Salzberg, "Action potentials and frequencydependent secretion in the mouse neurohypophysis," Neuroendocrinology 43, 557-563 (1986).

    [8] C. A. Bondy, H. Gainer, J. T. Russell, "Effects of stimulus frequency and potassium channel blockade on the secretion of vasopressin and oxytocin from the neurohypophysis," Neuroendocrinology 46, 258-267 (1987).

    [9] B. M. Salzberg, A. L. Obaid, "Optical studies of the secretory event at vertebrate nerve terminals," J. Exp. Biol. 139, 195-231 (1988).

    [10] P. Kosterin, A. L. Obaid, B. M. Salzberg, "Longlasting intrinsic optical changes observed in the neurointermediate lobe of the mouse pituitary reflect volume changes in cells of the pars intermedia," Neuroendocrinology 92, 158-167 (2010).

    [11] A. L. Obaid, K. Staley, J. B. Shammash, B. M. Salzberg, "Stilbene derivatives or chloride replacement by impermeable anions dramatically alter a late component of the light-scattering change in mammalian nerve terminals," Bio. Bull. 177, (1989b).

    [12] A. L. Obaid, R. Flores, B. M. Salzberg, "Calcium channels that are required for secretion from intact nerve terminals of vertebrates are sensitive to omega-conotoxin and relatively insensitive to dihydropyridines. Optical studies with and without voltage-sensitive dyes," J. Gen. Physiol. 93, 715-729 (1989a).

    [13] T. D. Parsons, A. L. Obaid, B. M. Salzberg, "Aminoglycoside antibiotics block voltage-dependent calcium channels in intact vertebrate nerve terminals," J. Gen. Physiol. 99, 491-504 (1992).

    [14] M. Muschol, B. M. Salzberg, "Dependence of transient and residual calcium dynamics on actionpotential patterning during neuropeptide secretion," J. Neurosci. 20, 6773-6780 (2000).

    [15] M. Muschol, P. Kosterin, M. Ichikawa, B. M. Salzberg, "Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of "stuttering conduction," J. Neurosci. 23, 11352-11362 (2003).

    [16] N. Hansra, S. Arya, M. W. Quick, "Intracellular domains of a rat brain GABA transporter that govern transport," J. Neurosci. 24, 4082-4087 (2004).

    [17] F. Jursky, N. Nelson, "Developmental expression of GABA transporters GAT1 and GAT4 suggests involvement in brain maturation," J. Neurochem. 67, 857-867 (1996).

    [18] E. Ponder, "The relation of red cell diameter and number to the light transmission of suspensions," Am. J. Physiol. 111, 99-106 (1935).

    [19] M. Muschol, F. Rosenberger, "Interactions in undersaturated and supersaturated lysozyme solutions: Static and dynamic light scattering results," J. Chem. Phys. 103, 10424-10432 (1995).

    [20] M. Muschol, F. Rosenberger, "Lack of evidence for prenucleation aggregate formation in lysozyme crystal growth solutions," J. Crys. Growth 167, 738-747 (1996).

    [21] W. Han, D. Li, A. K. Stout, K. Takimoto, E. S. Levitan, "Ca2t-induced deprotonation of peptide hormones inside secretory vesicles in preparation for release," J. Neurosci. 19, 900-905 (1999).

    [22] I. Hide, J. P. Bennett, A. Pizzey, G. Boonen, D. Bar-Sagi, B. D. Gomperts, P. E. Tatham, "Degranulation of individual mast cells in response to Ca2t and guanine nucleotides: An all-or-none event," J. Cell Biol. 123, 585-593 (1993).

    [23] A. L. Obaid, B. M. Salzberg, "Micromolar 4- aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization: Optical recording of action potential propagation using an ultrafast photodiode-MOSFET camera and a photodiode array," J. Gen. Physiol. 107, 353-368 (1996).

    [24] P. D. Suzdak, K. Frederiksen, K. E. Andersen, P. O. Sorensen, L. J. Knutsen, E. B. Nielsen, "NNC-711, a novel potent and selective gamma-aminobutyric acid uptake inhibitor: Pharmacological characterization," Eur. J. Pharmacol. 224, 189-198 (1992).

    [25] K. Jensen, C. S. Chiu, I. Sokolova, H. A. Lester, I. Mody, "GABA transporter-1 (GAT1)-deficient mice: Differential tonic activation of GABAA versus GABAB receptors in the hippocampus," J. Neurophysiol. 90, 2690-2701 (2003).

    [26] R. Barrett-Jolley, "Nipecotic acid directly activates GABA(A)-like ion channels," Br. J. Pharmacol. 133, 673-678 (2001).

    [27] R. M. Buijs, E. H. van Vulpen, M. Geffard, "Ultrastructural localization of GABA in the supraoptic nucleus and neural lobe," Neuroscience 20, 347-355 (1987).

    [28] M. Rabhi, B. Onteniente, O. Kah, M. Geffard, A. Calas, "Immunocytochemical study of the GABAergic innervation of the mouse pituitary by use of antibodies against gamma-aminobutyric acid (GABA)," Cell Tissue Res. 247, 33-40 (1987).

    [29] H. Rosenboom, M. Lindau, "Exo-endocytosis and closing of the fission pore during endocytosis in single pituitary nerve terminals internally perfused with high calcium concentrations," Proc. Natl. Acad. Sci. USA 91, 5267-5271 (1994).

    [30] S. F. Hsu, M. B. Jackson, "Rapid exocytosis and endocytosis in nerve terminals of the rat posterior pituitary," J. Physiol. 494(Pt 2), 539-553 (1996).

    [31] K. Holthoff, O. W. Witte, "Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space," J. Neurosci. 16, 2740-2749 (1996).

    [32] Y. Momose-Sato, K. Sato, A. Hirota, K. Kamino, "GABA-induced intrinsic light-scattering changes associated with voltage-sensitive dye signals in embryonic brain stem slices: Coupling of depolarization and cell shrinkage," J. Neurophysiol. 79, 2208-2217 (1998).

    [33] M. Palacin, R. Estevez, J. Bertran, A. Zorzano, "Molecular biology of mammalian plasma membrane amino acid transporters," Physiol. Rev. 78, 969-1054 (1998).

    [34] G. B. Richerson, Y. Wu, "Dynamic equilibrium of neurotransmitter transporters: Not just for reuptake anymore," J. Neurophysiol. 90, 1363-1374 (2003).

    [35] S. Tamura, H. Nelson, A. Tamura, N. Nelson, "Short external loops as potential substrate binding site of gamma-aminobutyric acid transporters," J. Biol. Chem. 270, 28712-28715 (1995).

    [36] X. T. Jin, J. F. Pare, Y. Smith, "Differential localization and function of GABA transporters, GAT-1 and GAT-3, in the rat globus pallidus," Eur. J. Neurosci. 33, 1504-1518 (2011).

    P. KOSTERIN, A. L. OBAID, B. M. SALZBERG. GABA UPTAKE BY GAT1 MODULATES LONG-TERM OPTICAL CHANGES FOLLOWING ELECTRICAL STIMULATION OF THE PITUITARY GLAND NEUROINTERMEDIATE LOBE[J]. Journal of Innovative Optical Health Sciences, 2013, 6(3): 1350020
    Download Citation