• High Power Laser and Particle Beams
  • Vol. 33, Issue 8, 081006 (2021)
Shuqin Lin1、2, Yangjian Cai1、2、3、*, and Jiayi Yu1、2、*
Author Affiliations
  • 1School of Physics and Electronics, Shandong Normal University, Ji’nan 250358, China
  • 2Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, Ji’nan 250358, China
  • 3School of Physical Science and Technology, Soochow University, Suzhou 215006, China
  • show less
    DOI: 10.11884/HPLPB202133.210210 Cite this Article
    Shuqin Lin, Yangjian Cai, Jiayi Yu. Research progress of propagation of beams with special correlation structure in turbulent atmosphere[J]. High Power Laser and Particle Beams, 2021, 33(8): 081006 Copy Citation Text show less
    References

    [1] Baumgartl J, Mazilu M, Dholakia K. Optically mediated particle clearing using Airy wavepackets[J]. Nature Photonics, 2, 675-678(2008).

    [2] Garcés-Chávez V, McGloin D, Melville H, et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam[J]. Nature, 419, 145-147(2002).

    [3] Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 341, 537-540(2013).

    [4] Qiao Zhen, Wan Zhenyu, Xie Guoqiang, et al. Multi-vortex laser enabling spatial and temporal encoding[J]. PhotoniX, 1, 13(2020).

    [5] rews L C, Phillips R L. Laser beam propagation through rom media[M]. 2nd ed. Bellingham: SPIE Press, 2005.

    [6] Wolf E. Unified theory of coherence and polarization of random electromagnetic beams[J]. Physics Letters A, 312, 263-267(2003).

    [7] Wolf E. Introduction to the they of coherence polarization of light[M]. Cambridge: Cambridge University Press, 2007.

    [8] Gbur G J. Singular optics[M]. Flida: CRC Press, 2016.

    [9] Kotkova O. Rom light beams: they applications[M]. Flida: CRC Press, 2013.

    [10] Mel L, Wolf E. Optical coherence quantum optics[M]. Cambridge: Cambridge University Press, 1995.

    [11] Cai Yangjian, Chen Yahong, Yu Jiayi, et al. Chapter three—generation of partially coherent beams[J]. Progress in Optics, 62, 157-223(2017).

    [12] Mitchell M, Chen Zhigang, Shih M F, et al. Self-trapping of partially spatially incoherent light[J]. Physical Review Letters, 77, 490-493(1996).

    [13] Akhmediev N, Królikowski W, Snyder A W. Partially coherent solitons of variable shape[J]. Physical Review Letters, 81, 4632-4635(1998).

    [14] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Physical Review Letters, 80, 2586-2589(1998).

    [15] Clark J N, Huang X, Harder R, et al. High-resolution three-dimensional partially coherent diffraction imaging[J]. Nature Communications, 3, 993(2012).

    [16] Zhang Jingfang, Wang Zhaoying, Cheng Bing, et al. Atom cooling by partially spatially coherent lasers[J]. Physical Review A, 88, 023416(2013).

    [17] Zhu Shijun, Wang Jing, Liu Xianlong, et al. Generation of arbitrary radially polarized array beams by manipulating correlation structure[J]. Applied Physics Letters, 109, 161904(2016).

    [18] Chen Yahong, Ponomarenko S A, Cai Yangjian. Experimental generation of optical coherence lattices[J]. Applied Physics Letters, 109, 061107(2016).

    [19] Liang Chunhao, Wu Gaofeng, Wang Fei, et al. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources[J]. Optics Express, 25, 28352-28362(2017).

    [20] Lu Xingyuan, Shao Yifeng, Zhao Chengliang, et al. Noniterative spatially partially coherent diffractive imaging using pinhole array mask[J]. Advanced Photonics, 1, 016005(2019).

    [21] Chen Yahong, Norrman A, Ponomarenko S A, et al. Chapter five—optical coherence and electromagnetic surface waves[J]. Progress in Optics, 65, 105-172(2020).

    [22] Peng Deming, Huang Zhaofeng, Liu Yonglei, et al. Optical coherence encryption with structured random light[J]. PhotoniX, 2, 6(2021).

    [23] Lin Rong, Chen Mengyu, Liu Yonglei, et al. Measuring refractive indices of a uniaxial crystal by structured light with non-uniform correlation[J]. Optics Letters, 46, 2268-2271(2021).

    [24] Korotkova O, Gbur G. Chapter four—applications of optical coherence theory[J]. Progress in Optics, 65, 43-104(2020).

    [25] Gbur G. Partially coherent beam propagation in atmospheric turbulence[J]. Journal of the Optical Society of America A, 31, 2038-2045(2014).

    [26] Wang Fei, Liu Xianlong, Cai Yangjian. Propagation of partially coherent beam in turbulent atmosphere: a review[J]. Progress in Electromagnetics Research, 150, 123-143(2015).

    [28] Gbur G, Wolf E. Spreading of partially coherent beams in random media[J]. Journal of the Optical Society of America A, 19, 1592-1598(2002).

    [29] Shirai T, Dogariu A, Wolf E. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence[J]. Journal of the Optical Society of America A, 20, 1094-1102(2003).

    [30] Dogariu A, Amarande S. Propagation of partially coherent beams: turbulence-induced degradation[J]. Optics Letters, 28, 10-12(2003).

    [31] Ricklin J C, Davidson F M. Atmospheric optical communication with a Gaussian Schell beam[J]. Journal of the Optical Society of America A, 20, 856-866(2003).

    [32] Dan Youquan, Zhang Bin. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere[J]. Optics Express, 16, 15563-15575(2008).

    [33] Dan Youquan, Zhang Bin. Second moments of partially coherent beams in atmospheric turbulence[J]. Optics Letters, 34, 563-565(2009).

    [34] Gu Yalong, Gbur G. Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence[J]. Journal of the Optical Society of America A, 27, 2621-2629(2010).

    [35] Cang Ji, Fang Xu, Liu Xu. Propagation properties of multi-Gaussian Schell-model beams through ABCD optical systems and in atmospheric turbulence[J]. Optics & Laser Technology, 50, 65-70(2013).

    [36] Du Shengcai, Yuan Yangsheng, Liang Chunhao, et al. Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere[J]. Optics & Laser Technology, 50, 14-19(2013).

    [37] Yuan Yangsheng, Liu Xianlong, Wang Fei, et al. Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Communications, 305, 57-65(2013).

    [38] Kotkova O, AvramovZamurovic S, Nelson C, et al. Scintillation reduction in multiGaussian Schellmodel beams propagating in atmospheric turbulence[C]Proceedings of SPIE 9224 Laser Communication Propagation through the Atmosphere Oceans III. 2014: 92240M.

    [39] Sharifi M, Wu Guohua, Luo Bin, et al. Beam wander of electromagnetic partially coherent flat-topped beam propagating in turbulent atmosphere[J]. Optik, 125, 561-564(2014).

    [40] Korotkova O, Shchepakina E. Rectangular multi-Gaussian Schell-model beams in atmospheric turbulence[J]. Journal of Optics, 16, 045704(2014).

    [41] Wu Guohua, Zhou He, Zhao Tonggang, et al. Propagation properties of electromagnetic multi-Gaussian Schell model beams propagating through atmospheric turbulence[J]. Journal of the Korean Physical Society, 64, 826-831(2014).

    [42] Mei Zhangrong, Shchepakina E, Korotkova O. Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence[J]. Optics Express, 21, 17512-17519(2013).

    [43] Mei Zhangrong, Korotkova O. Electromagnetic cosine-Gaussian Schell-model beams in free space and atmospheric turbulence[J]. Optics Express, 21, 27246-27259(2013).

    [44] Xu Huafeng, Zhang Zhou, Qu Jun, et al. Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence[J]. Optics Express, 22, 22479-22489(2014).

    [45] Cang Ji, Xiu Peng, Liu Xu. Propagation of Laguerre–Gaussian and Bessel–Gaussian Schell-model beams through paraxial optical systems in turbulent atmosphere[J]. Optics & Laser Technology, 54, 35-41(2013).

    [46] Wang Haiyan, Wang Hailin, Xu Yongxiang, et al. Intensity and polarization properties of the partially coherent Laguerre–Gaussian vector beams with vortices propagating through turbulent atmosphere[J]. Optics & Laser Technology, 56, 1-6(2014).

    [47] Chen Rong, Liu Lin, Zhu Shijun, et al. Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Express, 22, 1871-1883(2014).

    [48] Yu Jiayi, Chen Yahong, Liu Lin, et al. Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell-model beam in Kolmogorov and non-Kolmogorov turbulence[J]. Optics Express, 23, 13467-13481(2015).

    [49] Zhou Yuan, Yuan Yangsheng, Qu Jun, et al. Propagation properties of Laguerre-Gaussian correlated Schell-model beam in non-Kolmogorov turbulence[J]. Optics Express, 24, 10682-10693(2016).

    [51] Liu Xianlong, Yu Jiayi, Cai Yangjian, et al. Propagation of optical coherence lattices in the turbulent atmosphere[J]. Optics Letters, 41, 4182-4185(2016).

    [52] Peng Xiaofeng, Liu Lin, Yu Jiayi, et al. Propagation of a radially polarized twisted Gaussian Schell-model beam in turbulent atmosphere[J]. Journal of Optics, 18, 125601(2016).

    [53] Xu Yonggen, Dan Youquan, Yu Jiayi, et al. Propagation properties of partially coherent dark hollow beam in inhomogeneous atmospheric turbulence[J]. Journal of Modern Optics, 63, 2186-2197(2016).

    [54] Song Zhenzhen, Liu Zhengjun, Zhou Keya, et al. Propagation factors of multi-sinc Schell-model beams in non-Kolmogorov turbulence[J]. Optics Express, 24, 1804-1813(2016).

    [55] Li Jinhong, Suo Qiangbo, Chen Linying. Analysis to beam quality of partially coherent flat-topped vortex beams propagating through atmospheric turbulence[J]. Optik, 127, 11342-11348(2016).

    [56] Zhu Jie, Li Xiaoli, Tang Huiqin, et al. Propagation of multi-cosine-Laguerre-Gaussian correlated Schell-model beams in free space and atmospheric turbulence[J]. Optics Express, 25, 20071-20086(2017).

    [57] Xu Yonggen, Dan Youquan, Yu Jiayi, et al. Kurtosis parameter K of arbitrary electromagnetic beams propagating through non-Kolmogorov turbulence[J]. Journal of Modern Optics, 64, 1976-1987(2017).

    [58] Yu Jiayi, Cai Yangjian, Gbur G. Rectangular Hermite non-uniformly correlated beams and its propagation properties[J]. Optics Express, 26, 27894-27906(2018).

    [59] Yu Jiayi, Wang Fei, Liu Lin, et al. Propagation properties of Hermite non-uniformly correlated beams in turbulence[J]. Optics Express, 26, 16333-16343(2018).

    [60] Huang Yan, Yuan Yangsheng, Liu Xianlong, et al. Propagation of optical coherence vortex lattices in turbulent atmosphere[J]. Applied Sciences, 8, 2476(2018).

    [61] Yu Jiayi, Zhu Xinlei, Wang Fei, et al. Experimental study of reducing beam wander by modulating the coherence structure of structured light beams[J]. Optics Letters, 44, 4371-4374(2019).

    [62] Yu Jiayi, Huang Yan, Wang Fei, et al. Scintillation properties of a partially coherent vector beam with vortex phase in turbulent atmosphere[J]. Optics Express, 27, 26676-26688(2019).

    [63] Lin Rong, Yu Hancheng, Zhu Xinlei, et al. The evolution of spectral intensity and orbital angular momentum of twisted Hermite Gaussian Schell model beams in turbulence[J]. Optics Express, 28, 7152-7164(2020).

    [64] Zhang Bo, Huang Hongkun, Xie Chenxia, et al. Twisted rectangular Laguerre–Gaussian correlated sources in anisotropic turbulent atmosphere[J]. Optics Communications, 459, 125004(2020).

    [65] Wei Dongmei, Li Shuwei, Zeng Jun, et al. Comparative study of spiral spectrum of elegant and standard Laguerre–Gaussian beams in atmospheric turbulence[J]. Journal of Russian Laser Research, 41, 364-372(2020).

    [66] Lin Shuqin, Wang Cong, Zhu Xinlei, et al. Propagation of radially polarized Hermite non-uniformly correlated beams in a turbulent atmosphere[J]. Optics Express, 28, 27238-27249(2020).

    [67] Zhao Xuechun, Zhang Lei, Lin Rong, et al. Hermite non-uniformly correlated array beams and its propagation properties[J]. Chinese Physics Letters, 37, 124202(2020).

    [68] Liu Yonglei, Lin Rong, Wang Fei, et al. Propagation properties of Laguerre-Gaussian Schell-model beams with a twist phase[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 264, 107556(2021).

    [69] Cai Yangjian, Chen Yahong, Wang Fei. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [Invited][J]. Journal of the Optical Society of America A, 31, 2083-2096(2014).

    [70] Gori F, Santarsiero M. Devising genuine spatial correlation functions[J]. Optics Letters, 32, 3531-3533(2007).

    [71] Gori F, Ramírez-Sánchez V, Santarsiero M, et al. On genuine cross-spectral density matrices[J]. Journal of Optics A: Pure and Applied Optics, 11, 085706(2009).

    [72] Monin A S, Yaglom A M, Lumley J L. Statistical fluid mechanics: mechanics of turbulence[M]. Cambridge: The MIT Press, 1971.

    [73] Taylor G I. The spectrum of turbulence[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 164, 476-490(1938).

    [74] Kolmogorov A N. The local structure of turbulence in an incompressible fluid at very high Reynolds number[J]. Soviet Physics Uspekhi, 30, 301-305(1941).

    [75] Bn M, Wolf E. Principles of optics: electromagic they of propagation, interference diffraction of light[M]. 7th ed. Cambridge: Cambridge University Press, 1999.

    [76] Tatarskiĭ V I. Wave propagation in a turbulent medium[M]. New Yk: McGrawHill, 1961.

    [77] Harlow G R. Wave propagation in a random medium[J]. Physics Bulletin, 11, 232-233(1960).

    [78] Lutomirski R F, Yura H T. Propagation of a finite optical beam in an inhomogeneous medium[J]. Applied Optics, 10, 1652-1658(1971).

    [79] Yura H T, Hanson S G. Second-order statistics for wave propagation through complex optical systems[J]. Journal of the Optical Society of America A, 6, 564-575(1989).

    [80] Siegman A E. New developments in laser resonats[C]Proceedings of SPIE, Optical Resonats. 1990, 1224:24.

    [81] Sahin S, Korotkova O. Light sources generating far fields with tunable flat profiles[J]. Optics Letters, 37, 2970-2972(2012).

    [82] Korotkova O, Sahin S, Shchepakina E. Multi-Gaussian Schell-model beams[J]. Journal of the Optical Society of America A, 29, 2159-2164(2012).

    [83] Chen Yahong, Gu Jiaxin, Wang Fei, et al. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam[J]. Physical Review A, 91, 013823(2015).

    [84] Wang Fei, Liu Xianlong, Yuan Yangsheng, et al. Experimental generation of partially coherent beams with different complex degrees of coherence[J]. Optics Letters, 38, 1814-1816(2013).

    [85] Wang Fei, Liang Chunhao, Yuan Yangsheng, et al. Generalized multi-Gaussian correlated Schell-model beam: from theory to experiment[J]. Optics Express, 22, 23456-23464(2014).

    [86] Chen Yahong, Liu Lin, Wang Fei, et al. Elliptical Laguerre-Gaussian correlated Schell-model beam[J]. Optics Express, 22, 13975-13987(2014).

    [87] Chen Yahong, Wang Fei, Zhao Chengliang, et al. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam[J]. Optics Express, 22, 5826-5838(2014).

    [88] Liang Chunhao, Wang Fei, Liu Xianlong, et al. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry[J]. Optics Letters, 39, 769-772(2014).

    [89] Chen Yahong, Wang Fei, Liu Lin, et al. Generation and propagation of a partially coherent vector beam with special correlation functions[J]. Physical Review A, 89, 013801(2014).

    [90] Zhu Shijun, Chen Yahong, Wang Jing, et al. Generation and propagation of a vector cosine-Gaussian correlated beam with radial polarization[J]. Optics Express, 23, 33099-33115(2015).

    [91] Chen Yahong, Yu Jiayi, Yuan Yangsheng, et al. Theoretical and experimental studies of a rectangular Laguerre–Gaussian-correlated Schell-model beam[J]. Applied Physics B, 122, 31(2016).

    [92] Peng Xiaofeng, Lu Xingyuan, Liu Xianlong, et al. Generation and propagation of a Hermite-Gaussian correlated Schell-model LG0l beam[J]. Applied Sciences, 9, 610(2019).

    [93] Hyde IV M W, Basu S, Voelz D G, et al. Experimentally generating any desired partially coherent Schell-model source using phase-only control[J]. Journal of Applied Physics, 118, 093102(2015).

    [94] Hyde IV M W, Basu S, Voelz D G, et al. Generating partially coherent Schell-model sources using a modified phase screen approach[J]. Optical Engineering, 54, 120501(2015).

    [95] Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations[J]. Optics Letters, 36, 4104-4106(2011).

    [96] Tong Zhisong, Korotkova O. Nonuniformly correlated light beams in uniformly correlated media[J]. Optics Letters, 37, 3240-3242(2012).

    [97] Gu Yalong, Gbur G. Scintillation of nonuniformly correlated beams in atmospheric turbulence[J]. Optics Letters, 38, 1395-1397(2013).

    [98] Yu Jiayi, Zhu Xinlei, Lin Shuqin, et al. Vector partially coherent beams with prescribed non-uniform correlation structure[J]. Optics Letters, 45, 3824-3827(2020).

    [99] Hyde IV M W, Bose-Pillai S, Voelz D G, et al. Generation of vector partially coherent optical sources using phase-only spatial light modulators[J]. Physical Review Applied, 6, 064030(2016).

    [100] Hyde IV M W, Bose-Pillai S R, Wood R A. Synthesis of non-uniformly correlated partially coherent sources using a deformable mirror[J]. Applied Physics Letters, 111, 101106(2017).

    [101] Zhu Xinlei, Yu Jiayi, Wang Fei, et al. Synthesis of vector nonuniformly correlated light beams by a single digital mirror device[J]. Optics Letters, 46, 2996-2999(2021).

    Shuqin Lin, Yangjian Cai, Jiayi Yu. Research progress of propagation of beams with special correlation structure in turbulent atmosphere[J]. High Power Laser and Particle Beams, 2021, 33(8): 081006
    Download Citation