• Opto-Electronic Engineering
  • Vol. 47, Issue 5, 190674 (2020)
Liu Xingbo, Wang Qiu, Xu Quan*, Zhang Xueqian, Xu Yuehong, Zhang Weili, and Han Jiaguang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190674 Cite this Article
    Liu Xingbo, Wang Qiu, Xu Quan, Zhang Xueqian, Xu Yuehong, Zhang Weili, Han Jiaguang. Metasurface-based computer generated holography at terahertz frequencies[J]. Opto-Electronic Engineering, 2020, 47(5): 190674 Copy Citation Text show less
    References

    [1] Mittleman D. Sensing with Terahertz Radiation[M]. Berlin: Springer-Verlag, 2003: 117–153.

    [2] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910–928.

    [3] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966–3969.

    [4] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77–79.

    [5] Zhang S, Park Y S, Li J S, et al. Negative refractive index in chiral metamaterials[J]. Physical Review Letters, 2009, 102(2): 023901.

    [6] Silveirinha M, Engheta N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials[J]. Physical Review Letters, 2006, 97(15): 157403.

    [7] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337–339.

    [8] Liang D C, Gu J Q, Han J G, et al. Robust large dimension terahertz cloaking[J]. Advanced Materials, 2012, 24(7): 916–921.

    [9] Valentine J, Li J, Zentgraf T, et al. An optical cloak made of dielectrics[J]. Nature Materials, 2009, 8(7): 568–571.

    [10] Liu Z W, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819): 1686.

    [11] Casse B D F, Lu W T, Huang Y J, et al. Super-resolution imaging using a three-dimensional metamaterials nanolens[J]. Applied Physics Letters, 2010, 96(2): 023114.

    [12] Safavi-Naeini A H, Alegre T P M, Chan J, et al. Electromagnetically induced transparency and slow light with optomechanics[J]. Nature, 2011, 472(7341): 69–73.

    [13] Gu J Q, Singh R, Liu X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 2012, 3: 1151.

    [14] Chen Y L, Analytis J G, Chu J H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3[J]. Science, 2009, 325(5937): 178–181.

    [15] Chang C Z, Zhang J S, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J]. Science, 2013, 340(6129): 167–170.

    [16] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807.

    [17] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308–312.

    [18] Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.

    [19] Zheng J, Ye Z C, Sun N L, et al. Highly anisotropic metasurface: a polarized beam splitter and hologram[J]. Scientific Reports, 2014, 4: 6491.

    [20] Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress[J]. Reports on Progress in Physics, 2015, 78(2): 024401.

    [21] Chen W T, Yang K Y, Wang C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2014, 14(1): 225–230.

    [22] Huang Y W, Chen W T, Tsai W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122–3127.

    [23] Yifat Y, Eitan M, Iluz Z, et al. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays[J]. Nano Letters, 2014, 14(5): 2485–2490.

    [24] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932–4936.

    [25] Chen X Z, Huang L L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198.

    [26] Wang Q, Zhang X Q, Xu Y H, et al. A broadband metasurface‐based terahertz flat‐lens array[J]. Advanced Optical Materials, 2015, 3(6): 779–785.

    [27] Cong L Q, Xu N N, Gu J Q, et al. Highly flexible broadband terahertz metamaterial quarter‐wave plate[J]. Laser & Photonics Reviews, 2014, 8(4): 626–632.

    [28] Yu N F, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328–6333.

    [29] Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777–778.

    [30] Leith E N, Upatnieks J. Reconstructed wavefronts and communication theory[J]. Journal of the Optical Society of America, 1962, 52(10): 1123–1130.

    [31] Lohmann A W, Paris D P. Binary fraunhofer holograms, generated by computer[J]. Applied Optics, 1967, 6(10): 1739–1748.

    [32] Zhang X Q, Tian Z, Yue W S, et al. Broadband terahertz wave deflection based on C‐shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567–4572.

    [33] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937–943.

    [34] Zhang H F, Zhang X Q, Xu Q, et al. High‐efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation[J]. Advanced Optical Materials, 2018, 6(1): 1700773.

    [35] Xu Q, Zhang X Q, Wei M Q, et al. Efficient metacoupler for complex surface plasmon launching[J]. Advanced Optical Materials, 2018, 6(5): 1701117.

    [36] Devlin R C, Khorasaninejad M, Chen W T, et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10473–10478.

    [37] Wang Q, Zhang X Q, Xu Y H, et al. Broadband metasurface holograms: toward complete phase and amplitude engineering[J]. Scientific Reports, 2016, 6: 32867.

    [38] Deng Z L, Deng J H, Zhuang X, et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018, 18(5): 2885–2892.

    [39] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901.

    [40] Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241.

    [41] Wang Q, Plum E, Yang Q L, et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves[J]. Light: Science & Applications, 2018, 7(1): 25.

    [42] Ye W M, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 2016, 7: 11930.

    [43] Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography[J]. Nature Communications, 2016, 7: 12533.

    [44] Wang Q, Xu Q, Zhang X Q, et al. All-dielectric meta-holograms with holographic images transforming longitudinally[J]. ACS Photonics, 2018, 5(2): 599–606.

    [45] Wang Q, Zhang X Q, Plum E, et al. Polarization and frequency multiplexed terahertz meta‐holography[J]. Advanced Optical Materials, 2017, 5(14): 1700277.

    [46] Xu Q, Zhang X Q, Xu Y H, et al. Polarization‐controlled surface plasmon holography[J]. Laser & Photonics Reviews, 2017, 11(1): 1600212.

    [47] Liu X B, Wang Q, Zhang X Q, et al. Thermally dependent dynamic meta‐holography using a vanadium dioxide integrated metasurface[J]. Advanced Optical Materials, 2019, 7(12): 1900175.

    [48] Wang B, Quan B G, He J W, et al. Wavelength de-multiplexing metasurface hologram[J]. Scientific Reports, 2016, 6: 35657.

    [49] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2): 237–246.

    [50] Guo J Y, Wang T, Zhao H, et al. Reconfigurable terahertz metasurface pure phase holograms[J]. Advanced Optical Materials, 2019, 7(10): 1801696.

    Liu Xingbo, Wang Qiu, Xu Quan, Zhang Xueqian, Xu Yuehong, Zhang Weili, Han Jiaguang. Metasurface-based computer generated holography at terahertz frequencies[J]. Opto-Electronic Engineering, 2020, 47(5): 190674
    Download Citation