• Photonics Research
  • Vol. 8, Issue 3, 225 (2020)
Xixi Chen1, Tianli Wu1, Zhiyong Gong1, Yuchao Li1,2,*..., Yao Zhang1,3,* and Baojun Li1|Show fewer author(s)
Author Affiliations
  • 1Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
  • 2e-mail: liyuchao@jnu.edu.cn
  • 3e-mail: zhyao5@jnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.377795 Cite this Article Set citation alerts
    Xixi Chen, Tianli Wu, Zhiyong Gong, Yuchao Li, Yao Zhang, Baojun Li, "Subwavelength imaging and detection using adjustable and movable droplet microlenses," Photonics Res. 8, 225 (2020) Copy Citation Text show less
    References

    [1] Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong. Optical virtual imaging at 50  nm lateral resolution with a white light nanoscope. Nat. Commun., 2, 218(2011).

    [2] D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, H. Rigneault. Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence. Opt. Express, 16, 15297-15303(2008).

    [3] J. Kasim, Y. Ting, Y. Y. Meng, L. J. Ping, A. See, L. L. Jong, S. Z. Xiang. Near-field Raman imaging using optically trapped dielectric microsphere. Opt. Express, 16, 7976-7984(2008).

    [4] Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, B. J. Li. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci. Appl., 5, e16176(2016).

    [5] J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim. Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature, 460, 498-501(2009).

    [6] W. Fan, B. Yan, Z. Wang, L. Wu. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies. Sci. Adv., 2, e1600901(2016).

    [7] D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, K. Y. Suh. Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets. Adv. Mater., 24, 1709-1715(2012).

    [8] C. U. Murade, D. V. D. Ende, F. Mugele. High speed adaptive liquid microlens array. Opt. Express, 20, 18180-18187(2012).

    [9] Z. Chen, A. Taflove, V. Backman. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express, 12, 1214-1220(2004).

    [10] S. Lecler, Y. Takakura, P. Meyrueis. Properties of a three-dimensional photonic jet. Opt. Lett., 30, 2641-2643(2005).

    [11] W. Kaiser, W. L. Bond. Stimulated emission into optical whispering modes of spheres. Phys. Rev., 124, 1807-1809(1961).

    [12] P. Bharadwaj, B. Deutsch, L. Novotny. Optical antennas. Adv. Opt. Photon., 1, 438-483(2009).

    [13] X. Li, Z. Chen, A. Taflove, V. Backman. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Opt. Express, 13, 526-533(2005).

    [14] E. Mcleod, C. B. Arnold. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nat. Nanotechnol., 3, 413-417(2008).

    [15] C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, Y. Jiang. Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces, 9, 32896-32906(2017).

    [16] H. Aouani, P. Schön, S. Brasselet, H. Rigneault, J. Wenger. Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres. Biomed. Opt. Express, 1, 1075-1083(2010).

    [17] S. Lecler, S. Haacke, N. Lecong, O. Crégut, J. L. Rehspringer, C. Hirlimann. Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres. Opt. Express, 15, 4935-4942(2007).

    [18] A. Devilez, B. Stout, N. Bonod. Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission. ACS Nano, 4, 3390-3396(2010).

    [19] H. Yang, N. Moullan, J. Auwerx, M. A. M. Gijs. Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small, 10, 1712-1718(2014).

    [20] J. Wenger, D. Gérard, H. Aouani, H. Rigneault. Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres. Anal. Chem., 80, 6800-6804(2008).

    [21] Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, M. Hong. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25  nm lateral resolution in the visible spectrum. ACS Nano, 8, 1809-1816(2014).

    [22] A. Darafsheh, G. F. Walsh, L. D. Negro, V. N. Astratov. Optical super-resolution by high-index liquid-immersed microspheres. Appl. Phys. Lett., 101, 141128(2012).

    [23] A. Arya, R. Laha, G. M. Das, V. R. Dantham. Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures. J. Raman Spectrosc., 49, 897-902(2018).

    [24] L. A. Krivitsky, J. J. Wang, Z. Wang, B. Luk’yanchuk. Locomotion of microspheres for super-resolution imaging. Sci. Rep., 3, 3501(2013).

    [25] J. Li, W. Liu, T. Li, I. Rozen, J. Zhao, B. Bahari, B. Kante, J. Wang. Swimming microrobot optical nanoscopy. Nano Lett., 16, 6604-6609(2016).

    [26] M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, F. De Angelis. Combination of scanning probe technology with photonic nanojets. Sci. Rep., 7, 3474(2017).

    [27] F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, W. J. Li. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nat. Commun., 7, 13748(2016).

    [28] A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, A. Cárabe. Optical super-resolution imaging by high-index microspheres embedded in elastomers. Opt. Lett., 40, 5-8(2015).

    [29] H. Yang, M. Cornaglia, M. A. M. Gijs. Photonic nanojet array for fast detection of single nanoparticles in a flow. Nano Lett., 15, 1730-1735(2015).

    [30] L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).

    [31] A. Terray, J. Oakey, D. W. M. Marr. Fabrication of linear colloidal structures for microfluidic applications. Appl. Phys. Lett., 81, 1555-1557(2002).

    [32] J. E. Curtis, B. A. Koss, D. G. Grier. Dynamic holographic optical tweezers. Opt. Commun., 207, 169-175(2002).

    [33] L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, M. J. Miles. Assembly and force measurement with SPM-like probes in holographic optical tweezers. New J. Phys., 11, 023012(2009).

    [34] P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, J. Liphardt. Optical trapping and integration of semiconductor nanowire assemblies in water. Nat. Mater., 5, 97-101(2006).

    [35] M. Michihata, J. Kim, S. Takahashi, K. Takamasu, Y. Mizutani, Y. Takaya. Surface imaging technique by an optically trapped microsphere in air condition. Nanomanuf. Metrol., 1, 32-38(2018).

    [36] W. D. Bancroft. The theory of emulsification, I. J. Phys. Chem., 16, 275-309(1912).

    [37] H. Yang, R. Trouillon, G. Huszka, M. A. M. Gijs. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett., 16, 4862-4870(2016).

    [38] P. K. Upputuri, M. Pramanik. Microsphere-aided optical microscopy and its applications for super-resolution imaging. Opt. Commun., 404, 32-41(2017).

    [39] X. Hao, C. Kuang, X. Liu, H. Zhang, Y. Li. Microsphere based microscope with optical super-resolution capability. Appl. Phys. Lett., 99, 203102(2011).

    [40] M. Born, E. Wolf. Principles of Optics(1999).

    [41] Y. Matsuura, S. Kino, E. Yokoyama, T. Katagiri, H. Sato, H. Tashiro. Flexible fiber-optics probes for Raman and FT-IR remote spectroscopy. IEEE J. Sel. Top. Quantum Electron., 13, 1704-1708(2007).

    [42] J. K. Jaiswal, H. Mattoussi, J. M. Mauro, S. M. Simon. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol., 21, 47-51(2003).

    [43] Q. Ma, T. Y. Song, X. Y. Wang, Y. B. Li, Y. H. Shi, X. G. Su. Quantum dots as fluorescent labels for use in microsphere-based fluoroimmunoassays. Spectrosc. Lett., 40, 113-127(2007).

    [44] M. Arivazhagan, D. A. Rexalin. Vibrational spectral analysis and first hyperpolarizability studies of 1-bromonaphthalene based on ab initio and DFT methods. Spectrochim. Acta Part A, 83, 553-560(2011).

    [45] S. Kinge, M. Crego-Calama, D. N. Reinhoudt. Self-assembling nanoparticles at surfaces and interfaces. Chem. Phys. Chem., 9, 20-42(2018).

    Xixi Chen, Tianli Wu, Zhiyong Gong, Yuchao Li, Yao Zhang, Baojun Li, "Subwavelength imaging and detection using adjustable and movable droplet microlenses," Photonics Res. 8, 225 (2020)
    Download Citation