• Journal of Innovative Optical Health Sciences
  • Vol. 2, Issue 4, 387 (2009)
ROBABEH REZAEIPOOR1, RENU JOHN1, STEVEN G. ADIE1, ERIC J. CHANEY1, MARINA MARJANOVIC1, AMY L. OLDENBURG1, STEPHANIE A. RINNE1, and STEPHEN A. BOPPART1、2、*
Author Affiliations
  • 1Biophotonics Imaging Laboratory Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign, Urbana, IL, USA
  • 2Departments of Electrical and Computer Engineering, Bioengineering, and Internal Medicine University of Illinois at Urbana-Champaign Urbana, IL, USA
  • show less
    DOI: Cite this Article
    ROBABEH REZAEIPOOR, RENU JOHN, STEVEN G. ADIE, ERIC J. CHANEY, MARINA MARJANOVIC, AMY L. OLDENBURG, STEPHANIE A. RINNE, STEPHEN A. BOPPART. FC-DIRECTED ANTIBODY CONJUGATION OF MAGNETIC NANOPARTICLES FOR ENHANCED MOLECULAR TARGETING[J]. Journal of Innovative Optical Health Sciences, 2009, 2(4): 387 Copy Citation Text show less
    References

    [1] E. E. Graves, R. Weissleder, V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor model,” Current Molecular Medicine 4, 419–430 (2004)

    [2] D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003)

    [3] X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004)

    [4] S. Kim, Y. Y. Lim, E. G. Soltesz, A. M. D. Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. Laurence, L. H. Cohn, M. G. Bawendi, J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22, 93–97 (2004)

    [5] J. Czernin, M. E. Phelps, “Positron emission tomography scanning: Current and future applications,” Ann. Rev. Med. 53, 89–112 (2002)

    [6] G. D. Luker, D. Piwnica-Worms, “Molecular imaging in vivo with PET and SPECT,” Acad. Radiol. 8, 4–14 (2001)

    [7] P. A. Dayton, D. Pearson, J. Clark, S. Simon, P. A. Schumann, R. Zutshi, T. O. Matsunaga, K. W. Ferrara, “Ultrasonic analysis of peptide- and antibodytargeted microbubble contrast agents for molecular imaging of αvβ3-expressing cells,” Molecular Imaging 3, 125–134 (2004)

    [8] J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.- S. Suh, J. Cheon, “Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging,” Nat. Med. 13, 95–99 (2007)

    [9] M. A. Funovics, B. Kapeller, C. Hoeller, H. S. Su, R. Kunstfeld, S. Puig, K. Macfelda, “MR imaging of the HER2/neu and 9.2.27 tumor antigens using immunospecific contrast agents,” Magn. Reson. Imaging 22, 843–850 (2004)

    [10] I. H. El-Sayed, X. H. Huang, M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett. 5, 829–834 (2005)

    [11] S. A. Boppart, A. L. Oldenburg, C. Xu, D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 1–14 (2005)

    [12] T. M. Lee, F. J. Toublan, S. Sitafalwalla, A. L. Oldenburg, K. S. Suslickm, S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546–1548 (2003)

    [13] A. L. Oldenburg, F. J. Toublan, K. S. Suslick, A. Wei, S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Exp. 13, 6597–6614 (2005)

    [14] C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005)

    [15] N. Desai, V. Trieu, Z. W. Yao, L. Louie, S. Ci, A. Yang, C. Tao, T. De, B. Beals, D. Dykes, P. Noker, R. Yao, E. Labao, M. Hawkins, P. Soon- Shiong, “Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel,” Clin. Cancer Res. 12, 1317–1324 (2006)

    [16] R. Weissleder, A. Bogdanov, E. A. Neuwelt, M. Papisov, “Long-circulating iron oxides for MR imaging,” Adv. Drug Delivery Rev. 16, 321–334 (1995)

    [17] J. Sinek, H. Frieboes, X. Zheng, V. Cristini, “Twodimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles,” Biomedical Microdevices 6, 297–309 (2004)

    [18] B. Schade, S. H. L. Lam, D. Cernea, V. Sanguin- Gendreau, R. D. Cardiff, B. L. Jung, M. Hallett, W. J. Muller, “Distinct ErbB-2–coupled signaling pathways promote mammary tumors with unique pathologic and transcriptional profiles,” Cancer Res. 67, 7579–7589 (2007)

    [19] N. W. Shi Kam, M. O’Connell, J. A. Wisdom, H. Dai, “Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction,” Proc. Natl. Acad. Sci. U.S.A. 102, 11600–11605 (2005)

    [20] S. J. DeNardo, G. L. DeNardo, L. A. Miers, A. Natarajan, A. R. Foreman, C. Gr¨uettner, G. N. Adamson, R. Ivkov, “Development of tumor targeting bioprobes (in-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy,” Clin. Cancer Res. 11, 7087–7092 (2005)

    [21] P. Sharma, S. C. Brown, G. Walter, S. Santra, E. Scott, H. Ichikawa, Y. Fukumori, “Gdnanoparticulates: From magnetic resonance imaging to neutron capture therapy,” Adv. Powder Techn. 18, 663–698 (2007)

    [22] N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J. S. Guthi, S.-F. Chin, A. D. Sherry, D. A. Boothman, J. Gao, “Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems,” Nano Lett. 6, 2427–2430 (2006)

    [23] X.-H. Peng, X. Qian X, H. Mao, A. Y. Wang, Z. Chen, S. Nie, D. M. Shin, “Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy,” Intl. J. Nanomedicine 3, 311–321 (2008)

    [24] Y. X. J. Wang, S. M. Hussain, G. P. Krestin, “Superparamagnetic iron oxide contrast agents: Physicochemical characteristics and applications in MR imaging,” European Radiology 11, 2319–2331 (2001)

    [25] C. C. Berry, S. Wells, S. Charles, G. Aitchison, A. S. G. Curtis, “Cell response to dextran-derivatised iron oxide nanoparticles post internalization,” Biomaterials 25, 5405–5413 (2004)

    [26] H. Lee, E. Lee, D. K. Kim, N. K. Jang, Y. Y. Jeong, S. Jon, “Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging,” J. Am. Chem. Soc. 128, 7383–7389 (2006)

    [27] A. K. Gupta,M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials 26, 3995–4021 (2005)

    [28] J. R. McCarthy, R. Weissleder, “Multifunctional magnetic nanoparticles for targeted imaging and therapy,” Adv. Drug Delivery Rev. 60, 1241–1251 (2008)

    [29] D. Simberg, T. Duza, J. H. Park, M. Essler, J. Pilch, L. Zhang, A. M. Derfus, M. Yang, R. M. Hoffman, S. Bhatia, M. J. Sailor, E. Ruoslahti, “Biomimetic amplification of nanoparticle homing to tumors,” Proc. Nat. Acad. Sci. U.S.A. 104, 932–936 (2007)

    [30] F. Ibraimi, D. Kriz, M. Lu, L.-O. Hansson, K. Kriz, “Rapid one-step whole blood C-reactive protein magnetic permeability immunoassay with monoclonal antibody conjugated nanoparticles as superparamagnetic labels and enhanced sedimentation,” Analytical and Bioanalytical Chem. 384, 651–657 (2006)

    [31] C. Gr¨uttner, K. M¨uller, J. Teller, F. Westphal, A. Foreman, R. Ivkov, “Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy,” J. Magnetism and Magnetic Materials 311, 181–186 (2007)

    [32] E. Okon, D. Pouliquen, P. Okon, Z. V. Kovaleva, T. P. Stepanova, S. G. Lavit, B. N. Kudryavtsev, P. Jallet, “Biodegradation of magnetite dextran nanoparticles in the rat: A histologic and biophysical study,” Laboratory Investigation 71, 895–903 (1994)

    [33] H. Pardoe, W. Chua-Anusorn, T. G. St. Pierre, J. Dobson, “Detection limits for ferrimagnetic particle concentrations using magnetic resonance imaging based on proton transverse relaxation rate measurements,” Physics in Medicine and Biology 48, N89– N95 (2003)

    [34] J. W. Park, K. Hong, D. B. Kirpotin, G. Colbern, R. Shalaby, J. Baselga, Y. Shao, U. B. Nielsen, J. D. Marks, D. Moore, D. Papahadjopoulos, C. C. Benz, “Anti-HER2 immunoliposomes enhanced efficacy attributable to targeted delivery,” Clin. Cancer Res. 8, 1172–1181 (2002)

    [35] J. M. Perez, F. J. Simeone, Y. Saeki, L. Josephson, R. Weissleder, “Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media,” J. Am. Chem. Soc. 125, 10192–10193 (2003)

    [36] H. Tada, H. Higuchi, T. M. Wanatabe, N. Ohuchi, “In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice,” Cancer Res. 67, 1138–1144 (2007)

    [37] M. B. Wilson, P. K. Nakane, “The covalent coupling of proteins to periodate-oxidized sephadex: A new approach to immunoadsorbent preparation,” J. Immunol. Methods 12, 171–181 (1976)

    [38] J. M. C. Luk, A. A. Lindberg, “Rapid and sensitive detection of Salmonella (O: 6,7) by immunomagnetic monoclonal antibody-based assays,” J. Immunol. Methods 137, 1–8 (1991)

    [39] L. X. Tiefenauer, G. K¨uhne, R. Y. Andres, “Antibody-magnetite nanoparticles: In vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging,” Bioconjugate Chem. 4, 347–352 (1993)

    [40] F. Bonneaux, E. Dellacherie, P. Labrude, C. Vigneron, “Hemoglobin-dialdehyde dextran conjugates: Improvement of their oxygen-binding properties with anionic groups,” J. Protein Chem. 15, 461–465 (1996)

    [41] S. M. Moghimi, A. C. Hunter, J. C. Murray, “Nanomedicine: Current status and future prospects,” FASEB J. 19, 311–330 (2005).

    ROBABEH REZAEIPOOR, RENU JOHN, STEVEN G. ADIE, ERIC J. CHANEY, MARINA MARJANOVIC, AMY L. OLDENBURG, STEPHANIE A. RINNE, STEPHEN A. BOPPART. FC-DIRECTED ANTIBODY CONJUGATION OF MAGNETIC NANOPARTICLES FOR ENHANCED MOLECULAR TARGETING[J]. Journal of Innovative Optical Health Sciences, 2009, 2(4): 387
    Download Citation