• Laser & Optoelectronics Progress
  • Vol. 61, Issue 18, 1800002 (2024)
Di Wang1, Ting Zhang1, Shanshan Liang2,*, and Jun Zhang1,**
Author Affiliations
  • 1School of Life and Environmental Science, Guilin University of Electronic Science and Technology, Guilin 541004, Guangxi, China
  • 2National Innovation Center for Advanced Medical Devices, Shenzhen 518083, Guangdong, China
  • show less
    DOI: 10.3788/LOP240603 Cite this Article Set citation alerts
    Di Wang, Ting Zhang, Shanshan Liang, Jun Zhang. Principle and Clinical Quantitative Analysis of Optical Coherence Tomography Angiography[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1800002 Copy Citation Text show less
    References

    [1] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [2] Hayreh S S. Recent advances in fluorescein fundus angiography[J]. The British Journal of Ophthalmology, 58, 391-412(1974).

    [3] Slakter J S, Yannuzzi L A, Guyer D R et al. Indocyanine-green angiography[J]. Current Opinion in Ophthalmology, 6, 25-32(1995).

    [4] Lira R P C, Oliveira C L, Marques M V R B et al. Adverse reactions of fluorescein angiography: a prospective study[J]. Arquivos Brasileiros De Oftalmologia, 70, 615-618(2007).

    [5] Hope-Ross M, Yannuzzi L A, Gragoudas E S et al. Adverse reactions due to indocyanine green[J]. Ophthalmology, 101, 529-533(1994).

    [6] Li H K, Liu K Y, Yao L et al. ID-OCTA: OCT angiography based on inverse SNR and decorrelation features[J]. Journal of Innovative Optical Health Sciences, 14, 2130001(2021).

    [7] Hu J, Guo Y W, Zhu H M. Research progress of multi-modal contrast agent in optical coherence tomography[J]. Laser & Optoelectronics Progress, 59, 0617008(2022).

    [8] Makita S, Hong Y, Yamanari M et al. Optical coherence angiography[J]. Optics Express, 14, 7821-7840(2006).

    [9] An L, Wang R K. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography[J]. Optics Express, 16, 11438-11452(2008).

    [10] Mariampillai A, Leung M K K, Jarvi M et al. Optimized speckle variance OCT imaging of microvasculature[J]. Optics Letters, 35, 1257-1259(2010).

    [11] Kongwattananon W, Grasic D, Lin H et al. Role of optical coherence tomography angiography in detecting and monitoring inflammatory choroidal neovascularization[J]. Retina, 42, 1047-1056(2022).

    [12] de Carlo T E, Romano A, Waheed N K et al. A review of optical coherence tomography angiography (OCTA)[J]. International Journal of Retina and Vitreous, 1, 5(2015).

    [13] Wang R K, Jacques S L, Ma Z H et al. Three dimensional optical angiography[J]. Optics Express, 15, 4083-4097(2007).

    [14] Schmitt J M, Xiang S H, Yung K M. Speckle in optical coherence tomography[J]. Journal of Biomedical Optics, 4, 95-105(1999).

    [15] Leitgeb R A, Werkmeister R M, Blatter C et al. Doppler optical coherence tomography[J]. Progress in Retinal and Eye Research, 41, 26-43(2014).

    [16] Enfield J, Jonathan E, Leahy M. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)[J]. Biomedical Optics Express, 2, 1184-1193(2011).

    [17] Jonathan E, Enfield J, Leahy M J. Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images[J]. Journal of Biophotonics, 4, 583-587(2011).

    [18] Liu Y, Yang Y L, Yue X. Optical coherence tomography angiography and its applications in ophthalmology[J]. Laser & Optoelectronics Progress, 57, 180002(2020).

    [19] Guo J H, Li Y, Liu Z M et al. Methods and algorithms of OCTA[J]. Acta Laser Biology Sinica, 29, 385-391(2020).

    [20] Drexler W, Fujimoto J G. State-of-the-art retinal optical coherence tomography[J]. Progress in Retinal and Eye Research, 27, 45-88(2008).

    [21] Wang Y K, Chen S, Lin K et al. Multi-channel spectral-domain optical coherence tomography using single spectrometer[J]. Chinese Optics Letters, 21, 051102(2023).

    [22] Liu G J, Chen A Z. Advances in Doppler OCT[J]. Chinese Optics Letters, 11, 011702(2013).

    [23] Chen Z, Zhang J, Drexler W, Fujimoto J G. Doppler optical coherence tomography[M]. Optical coherence tomography, 621-651(2008).

    [24] Leitgeb R, Schmetterer L, Drexler W et al. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography[J]. Optics Express, 11, 3116-3121(2003).

    [25] Wan M M, Liang S S, Li X Y et al. Dual-beam delay-encoded all fiber Doppler optical coherence tomography for in vivo measurement of retinal blood flow[J]. Chinese Optics Letters, 20, 011701(2022).

    [26] Liu G J, Jia Y L, Pechauer A D et al. Split-spectrum phase-gradient optical coherence tomography angiography[J]. Biomedical Optics Express, 7, 2943-2954(2016).

    [27] Schwartz D M, Fingler J, Kim D Y et al. Phase-variance optical coherence tomography a technique for noninvasive angiography[J]. Ophthalmology, 121, 180-187(2014).

    [28] Fingler J, Schwartz D, Yang C et al. Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography[J]. Optics Express, 15, 12636-12653(2007).

    [29] Fingler J, Zawadzki R J, Werner J S et al. Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique[J]. Optics Express, 17, 22190-22200(2009).

    [30] Chen C L, Shi W S, Qiu Z Y et al. B-scan-sectioned dynamic micro-optical coherence tomography for bulk-motion suppression[J]. Chinese Optics Letters, 20, 021102(2022).

    [31] Wang L W, Li Y J, Li Y L et al. Improved speckle contrast optical coherence tomography angiography[J]. American Journal of Translational Research, 10, 3025-3035(2018).

    [32] Jia Y L, Tan O, Tokayer J et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 20, 4710-4725(2012).

    [33] Gao S S, Liu G J, Huang D et al. Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system[J]. Optics Letters, 40, 2305-2308(2015).

    [34] Wei X, Hormel T T, Jia Y L. Phase-stabilized complex-decorrelation angiography[J]. Biomedical Optics Express, 12, 2419-2431(2021).

    [35] Wang R K, An L, Saunders S et al. Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment[J]. Journal of Biomedical Optics, 15, 020502(2010).

    [36] Huang Y P, Zhang Q Q, Thorell M R et al. Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms[J]. Ophthalmic Surgery, Lasers & Imaging Retina, 45, 382-389(2014).

    [37] Wang R K, Zhang A Q, Choi W J et al. Wide-field optical coherence tomography angiography enabled by two repeated measurements of B-scans[J]. Optics Letters, 41, 2330-2333(2016).

    [38] Nam A S, Chico-Calero I, Vakoc B J. Complex differential variance algorithm for optical coherence tomography angiography[J]. Biomedical Optics Express, 5, 3822-3832(2014).

    [39] Braaf B, Donner S, Nam A S et al. Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina[J]. Biomedical Optics Express, 9, 486-506(2018).

    [40] Huang L Z, Fu Y M, Chen R X et al. SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model[J]. IEEE Transactions on Medical Imaging, 38, 2695-2704(2019).

    [41] Chen R X, Yao L, Liu K Y et al. Improvement of decorrelation-based OCT angiography by an adaptive spatial-temporal kernel in monitoring stimulus-evoked hemodynamic responses[J]. IEEE Transactions on Medical Imaging, 39, 4286-4296(2020).

    [42] Li H K, Liu K Y, Cao T T et al. High performance OCTA enabled by combining features of shape, intensity, and complex decorrelation[J]. Optics Letters, 46, 368-371(2021).

    [43] Bhatt D, Patel C, Talsania H et al. CNN variants for computer vision: history, architecture, application, challenges and future scope[J]. Electronics, 10, 2470(2021).

    [44] LeCun Y, Bottou L, Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).

    [45] Liu X, Huang Z Y, Wang Z Z et al. A deep learning based pipeline for optical coherence tomography angiography[J]. Journal of Biophotonics, 12, e201900008(2019).

    [46] Pan M N, Wang Y X, Gong P J et al. Feasibility of deep learning-based polarization-sensitive optical coherence tomography angiography for imaging cutaneous microvasculature[J]. Biomedical Optics Express, 14, 3856-3870(2023).

    [47] Chao S C, Yang S J, Chen H C et al. Early macular angiography among patients with glaucoma, ocular hypertension, and normal subjects[J]. Journal of Ophthalmology, 2019, 7419470(2019).

    [48] Nesper P L, Roberts P K, Onishi A C et al. Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography[J]. Investigative Ophthalmology & Visual Science, 58, BI(2017).

    [49] Pedinielli A, Bonnin S, Sanharawi M E et al. Three different optical coherence tomography angiography measurement methods for assessing capillary density changes in diabetic retinopathy[J]. Ophthalmic Surgery, Lasers & Imaging Retina, 48, 378-384(2017).

    [50] Falavarjani K G, Scott A W, Wang K et al. Correlation of multimodal imaging in sickle cell retinopathy[J]. Retina, 36, S111-S117(2016).

    [51] Jhaj G, Glazman S, Shrier E M et al. Non-exudative age-related macular degeneration foveal avascular zone area, foveal vessel density, and ganglion cell complex thickness[J]. Investigative Ophthalmology & Visual Science, 58, 36(2017).

    [52] Adhi M, Filho M A, Louzada R N et al. Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography[J]. Investigative Ophthalmology & Visual Science, 57, OCT486-OCT494(2016).

    [53] Akagi T, Uji A, Huang A S et al. Conjunctival and intrascleral vasculatures assessed using anterior segment optical coherence tomography angiography in normal eyes[J]. American Journal of Ophthalmology, 196, 1-9(2018).

    [54] Alam M, Zhang Y, Lim J I et al. Quantitative optical coherence tomography angiography features for objective classification and staging of diabetic retinopathy[J]. Retina, 40, 322-332(2020).

    [55] Ye H Y, Zheng C, Lan X P et al. Evaluation of retinal vasculature before and after treatment of children with obstructive sleep apnea-hypopnea syndrome by optical coherence tomography angiography[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 257, 543-548(2019).

    [56] Chu Z D, Lin J, Gao C et al. Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography[J]. Journal of Biomedical Optics, 21, 066008(2016).

    [57] Zahid S, Dolz-Marco R, Freund K B et al. Fractal dimensional analysis of optical coherence tomography angiography in eyes with diabetic retinopathy[J]. Investigative Ophthalmology & Visual Science, 57, 4940-4947(2016).

    [58] Alam M, Thapa D, Lim J I et al. Computer-aided classification of sickle cell retinopathy using quantitative features in optical coherence tomography angiography[J]. Biomedical Optics Express, 8, 4206-4216(2017).

    [59] Philip S, Najafi A, Tantraworasin A et al. Macula vessel density and foveal avascular zone parameters in exfoliation glaucoma compared to primary open-angle glaucoma[J]. Investigative Ophthalmology & Visual Science, 60, 1244-1253(2019).

    [60] Al-Sheikh M, Iafe N A, Phasukkijwatana N et al. Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography[J]. Retina, 38, 220-230(2018).

    [61] Uchida A, Hu M, Babiuch A et al. Optical coherence tomography angiography characteristics of choroidal neovascularization requiring varied dosing frequencies in treat-and-extend management: an analysis of the AVATAR study[J]. PLoS One, 14, e0218889(2019).

    [62] Patel R, Wang J, Campbell J P et al. Classification of choroidal neovascularization using projection-resolved optical coherence tomographic angiography[J]. Investigative Ophthalmology & Visual Science, 59, 4285-4291(2018).

    [63] Carnevali A, Cicinelli M V, Capuano V et al. Optical coherence tomography angiography: a useful tool for diagnosis of treatment-Naïve quiescent choroidal neovascularization[J]. American Journal of Ophthalmology, 169, 189-198(2016).

    [64] Choi J, Kwon J, Shin J W et al. Quantitative optical coherence tomography angiography of macular vascular structure and foveal avascular zone in glaucoma[J]. PLoS One, 12, e0184948(2017).

    [65] Zhang A Q, Zhang Q Q, Chen C L et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison[J]. Journal of Biomedical Optics, 20, 100901(2015).

    [66] Munk M R, Giannakaki-Zimmermann H, Berger L et al. OCT-angiography: a qualitative and quantitative comparison of 4 OCT-a devices[J]. PLoS One, 12, e0177059(2017).

    [67] Dadkhah A, Paudel D, Jiao S L. Comparative study of optical coherence tomography angiography algorithms for rodent retinal imaging[J]. Experimental Biology and Medicine, 246, 2207-2213(2021).

    [68] Xu Y H, Qiu C, Chen Y Y et al. Research progress of high-speed and wide-tuned frequency swept lasers for optical coherence tomography applications[J]. Laser & Optoelectronics Progress, 60, 1600003(2023).

    [69] Yang Z W, Wu X, Pei J H et al. Improvement of bandwidth in a 100 kHz swept laser source with phase controllable signal driving[J]. Chinese Optics Letters, 21, 011407(2023).

    [70] Huang D M, Li F, He Z J et al. 400 MHz ultrafast optical coherence tomography[J]. Optics Letters, 45, 6675-6678(2020).

    [71] Sun Z, Wang S Y. Application of deep learning in intravascular optical coherence tomography[J]. Laser & Optoelectronics Progress, 59, 2200002(2022).

    [72] Wu G Y, Yuan Z Q, Liang Y M. Unsupervised denoising of retinal OCT images based on deep learning[J]. Acta Optica Sinica, 43, 2010002(2023).

    [73] Kermany D S, Goldbaum M, Cai W J et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 172, 1122-1131(2018).

    Di Wang, Ting Zhang, Shanshan Liang, Jun Zhang. Principle and Clinical Quantitative Analysis of Optical Coherence Tomography Angiography[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1800002
    Download Citation