• Advanced Photonics
  • Vol. 3, Issue 1, 016002 (2021)
Chao Liu1、2, Jiangbo Chen1、2, Yachao Zhang1、2, Jingyi Zhu1、2, and Lidai Wang1、2、*
Author Affiliations
  • 1City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong SAR, China
  • 2City University of Hong Kong, Shenzhen Research Institute, Shenzhen, China
  • show less
    DOI: 10.1117/1.AP.3.1.016002 Cite this Article Set citation alerts
    Chao Liu, Jiangbo Chen, Yachao Zhang, Jingyi Zhu, Lidai Wang. Five-wavelength optical-resolution photoacoustic microscopy of blood and lymphatic vessels[J]. Advanced Photonics, 2021, 3(1): 016002 Copy Citation Text show less
    References

    [1] R. A. Hyde et al. Vasculature and lymphatic system imaging and ablation associated with a reservoir(2012).

    [2] L. A. Fordham, C. J. Chung, L. F. Donnelly. Imaging of congenital vascular and lymphatic anomalies of the head and neck. Neuroimaging Clin. N. Am., 10, 117-136(2000).

    [3] T. Hoshida et al. Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res., 66, 8065-8075(2006).

    [4] C. Martel et al. Photoacoustic lymphatic imaging with high spatial-temporal resolution. J. Biomed. Opt., 19, 116009(2014).

    [5] G. Follain et al. Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev. Cell, 45, 33-52.e12(2018).

    [6] K. Yttersian Sletta et al. Oxygen-dependent regulation of tumor growth and metastasis in human breast cancer xenografts. PLoS ONE, 12, e0183254(2017).

    [7] D. M. Lewis et al. Intratumoral oxygen gradients mediate sarcoma cell invasion. Proc. Natl. Acad. Sci. U. S. A., 113, 9292-9297(2016).

    [8] A. R. Nobre et al. The different routes to metastasis via hypoxia-regulated programs. Trends Cell Biol., 28, 941-956(2018).

    [9] H. Kobayashi et al. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett., 7, 1711-1716(2007).

    [10] T. Barrett, P. L. Choyke, H. Kobayashi. Imaging of the lymphatic system: new horizons. Contrast Media Mol. Imaging, 1, 230-245(2006).

    [11] F. Ogata et al. Novel lymphography using indocyanine green dye for near-infrared fluorescence labeling. Ann. Plast. Surg., 58, 652-655(2007).

    [12] S. Kim et al. Near-Infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol., 22, 93-97(2004).

    [13] R. Guimaraes et al. MR lymphography with superparamagnetic iron nanoparticles in rats: pathologic basis for contrast enhancement. Am. J. Roentgenol., 162, 201-207(1994).

    [14] H. Kobayashi et al. Multicolor imaging of lymphatic function with two nanomaterials: quantum dot-labeled cancer cells and dendrimer-based optical agents. Nanomedicine, 4, 411-419(2009).

    [15] C. Kim et al. Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats—volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging. Radiology, 255, 442-450(2010).

    [16] K. H. Song et al. Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model. J. Biomed. Opt., 13, 054033(2008).

    [17] K. H. Song et al. Near-Infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett., 9, 183-188(2009).

    [18] K. H. Song et al. Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes. Eur. J. Radiol., 70, 227-231(2009).

    [19] L. V. Wang, H. Wu. Biomedical Optics: Principles and Imaging(2012).

    [20] S. Hu. Optical-resolution photoacoustic microscopy(2010).

    [21] L. V. Wang, J. Yao. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods, 13, 627-638(2016).

    [22] J. Yao, L. V. Wang. Photoacoustic microscopy. Laser Photonics Rev., 7, 758-778(2013).

    [23] C. Kim, C. Favazza, L. V. Wang. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem. Rev., 110, 2756-2782(2010).

    [24] S. Jeon et al. Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans. Photoacoustics, 15, 100136(2019).

    [25] H.-C. Zhou et al. Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy. Photoacoustics, 15, 100143(2019).

    [26] Y. Zhou et al. Single-shot linear dichroism optical-resolution photoacoustic microscopy. Photoacoustics, 16, 100148(2019).

    [27] M. Li, Y. Tang, J. Yao. Photoacoustic tomography of blood oxygenation: a mini review. Photoacoustics, 10, 65-73(2018).

    [28] J. Chen et al. Wide-field polygon-scanning photoacoustic microscopy of oxygen saturation at 1-MHz A-line rate. Photoacoustics, 20, 100195(2020).

    [29] D. Li et al. Micro-rocket robot with all-optic actuating and tracking in blood. Light Sci. Appl., 9, 84(2020).

    [30] Y. Zhang, L. Wang. Video-rate ring-array ultrasound and photoacoustic tomography. IEEE Trans. Med. Imaging, 39, 4369-4375(2020).

    [31] C. Yin et al. Organic semiconducting polymer nanoparticles for photoacoustic labeling and tracking of stem cells in the second near-infrared window. ACS Nano, 12, 12201-12211(2018).

    [32] D. Wang et al. Nonlinear photoacoustic imaging by in situ multiphoton upconversion and energy transfer. ACS Photonics, 4, 2699-2705(2017).

    [33] M. Pramanik et al. In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node. Phys. Med. Biol., 54, 3291-3301(2009).

    [34] Z. Chen et al. Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents. Biomed. Opt. Express, 9, 2229-2239(2018).

    [35] R. J. Zemp et al. Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer. J. Biomed. Opt., 12, 010501(2007).

    [36] M. Erfanzadeh, Q. Zhu. Photoacoustic imaging with low-cost sources; a review. Photoacoustics, 14, 1-11(2019).

    [37] D. Razansky et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat. Photonics, 3, 412-417(2009).

    [38] P. Beard. Biomedical photoacoustic imaging. Interface Focus, 1, 602-631(2011).

    [39] D. Razansky, A. Buehler, V. Ntziachristos. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat. Protoc., 6, 1121-1129(2011).

    [40] A. Taruttis, V. Ntziachristos. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics, 9, 219-227(2015).

    [41] H. F. Zhang, K. Maslov, L. V. Wang. In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. Nat. Protoc., 2, 797-804(2007).

    [42] T. Jin et al. Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging. Opt. Lett., 42, 4434-4437(2017).

    [43] Q. Chen et al. Ultracompact high-resolution photoacoustic microscopy. Opt. Lett., 43, 1615-1618(2018).

    [44] P. Hajireza, A. Forbrich, R. J. Zemp. Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration. Opt. Lett., 38, 2711-2713(2013).

    [45] S. H. Baek, W. B. Roh. Single-mode Raman fiber laser based on a multimode fiber. Opt. Lett., 29, 153-155(2004).

    [46] C. Liu, Y. Liang, L. Wang. Single-shot photoacoustic microscopy of hemoglobin concentration, oxygen saturation, and blood flow in sub-microseconds. Photoacoustics, 17, 100156(2020).

    [47] Y. Zhou et al. Optical-resolution photoacoustic microscopy with ultrafast dual-wavelength excitation. J. Biophotonics, 13, e201960229(2020).

    [48] C. Liu, Y. Liang, L. Wang. Optical-resolution photoacoustic microscopy of oxygen saturation with nonlinear compensation. Biomed. Opt. Express, 10, 3061-3069(2019).

    [49] L. Wang et al. Fast voice-coil scanning optical-resolution photoacoustic microscopy. Opt. Lett., 36, 139-141(2011).

    [50] L. Wang, K. Maslov, L. V. Wang. Single-cell label-free photoacoustic flowoxigraphy in vivo. Proc. Natl. Acad. Sci. U. S. A., 110, 5759-5764(2013).

    [51] M. Damodaran, A. Amelink, J. F. De Boer. Optimal wavelengths for subdiffuse scanning laser oximetry of the human retina. J. Biomed. Opt., 23, 086003(2018).

    [52] R. J. Hill, W. Koningsberg. The structure of human hemoglobin. J. Biol. Chem., 237, 3151-3156(1962).

    [53] L. Wang, C. Zhang, L. V. Wang. Grüneisen relaxation photoacoustic microscopy. Phys. Rev. Lett., 113, 174301(2014).

    [54] A. Y. Shih et al. Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke. J. Cereb. Blood Flow Metab., 29, 738-751(2009).

    [55] J. Yao et al. Label-free oxygen-metabolic photoacoustic microscopy in vivo. J. Biomed. Opt., 16, 076003(2011).

    [56] R. Cao et al. Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain. NeuroImage, 150, 77-87(2017).

    [57] P. Vaupel, F. Kallinowski, P. Okunieff. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res., 49, 6449-6465(1989).

    [58] J. Chen et al. Confocal visible/NIR photoacoustic microscopy of tumors with structural, functional, and nanoprobe contrasts. Photonics Res., 8, 1875-1880(2020).

    CLP Journals

    [1] Dengfeng Li, Yachao Zhang, Chao Liu, Jiangbo Chen, Dong Sun, Lidai Wang. Review of photoacoustic imaging for microrobots tracking in vivo [Invited][J]. Chinese Optics Letters, 2021, 19(11): 111701

    Chao Liu, Jiangbo Chen, Yachao Zhang, Jingyi Zhu, Lidai Wang. Five-wavelength optical-resolution photoacoustic microscopy of blood and lymphatic vessels[J]. Advanced Photonics, 2021, 3(1): 016002
    Download Citation