• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011005 (2021)
Hui Zhou1、2、**, Chengjun Zhang1、2, Chaolin Lü1、2, Xingyu Zhang1、2, Hao Li1、2、3, Lixing You1、2、3、*, and Zhen Wang1、2、3
Author Affiliations
  • 1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 2CAS Center for Excellence in Superconducting Electronics, Shanghai 200050, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP202158.1011005 Cite this Article Set citation alerts
    Hui Zhou, Chengjun Zhang, Chaolin Lü, Xingyu Zhang, Hao Li, Lixing You, Zhen Wang. Recent Progress of Imaging Applications Based on Superconducting Nanowire Single-Photon Detectors[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011005 Copy Citation Text show less
    References

    [1] Hadfield R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 3, 696-705(2009).

    [7] Lita A E, Miller A J, Nam S W et al. Counting near-infrared single-photons with 95% efficiency[J]. Optics Express, 16, 3032-3040(2008).

    [8] Wang C, Yin Z Q, Wang S et al. Measurement-device-independent quantum key distribution robust against environmental disturbances[J]. Optica, 4, 1016-1023(2017). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-4-9-1016

    [9] Boaron A, Boso G, Rusca D et al. Secure quantum key distribution over 421 km of optical fiber[J]. Physical Review Letters, 121, 190502(2018). http://arxiv.org/abs/1807.03222v1

    [10] Chen J P, Zhang C, Liu Y et al. Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km[J]. Physical Review Letters, 124, 070501(2020). http://www.researchgate.net/publication/339423748_Sending-or-Not-Sending_with_Independent_Lasers_Secure_Twin-Field_Quantum_Key_Distribution_over_509_km

    [11] Zhong H S, Wang H, Deng Y H et al. Quantum computational advantage using photons[EB/OL]. (2020-12-03) [2021-02-01]. https://arxiv.org/abs/2012.01625

    [12] You L X. Superconducting nanowire single-photon detectors for quantum information[J]. Nanophotonics, 9, 2673-2692(2020). http://arxiv.org/abs/2006.00411

    [13] Inderbitzin K, Engel A, Schilling A et al. Soft X-ray single-photon detection with superconducting tantalum nitride and niobium nanowires[J]. IEEE Transactions on Applied Superconductivity, 23, 2200505(2013). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6384686

    [14] Wollman E E, Verma V B, Beyer A D et al. UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature[J]. Optics Express, 25, 26792-26801(2017).

    [15] Li H, Chen S J, You L X et al. Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging[J]. Optics Express, 24, 3535-3542(2016). http://europepmc.org/abstract/MED/26907010

    [16] Marsili F, Bellei F, Najafi F et al. Efficient single photon detection from 500 nm to 5 μm wavelength[J]. Nano Letters, 12, 4799-4804(2012). http://europepmc.org/abstract/MED/22889386

    [17] Verma V B, Korzh B, Walter A B et al. Single-photon detection in the mid-infrared up to 10 micron wavelength using tungsten silicide superconducting nanowire detectors[EB/OL]. [2021-02-01]. http://www.ftracker.net/index.php/Home/Index/content/id/58342585

    [18] Gol’tsman G N, Okunev O, Chulkova G et al. Picosecond superconducting single-photon optical detector[J]. Applied Physics Letters, 79, 705-707(2001).

    [19] Gol’tsman G, Okunev O, Chulkova G et al. Fabrication and properties of an ultrafast NbN hot-electron single-photon detector[J]. IEEE Transactions on Applied Superconductivity, 11, 574-577(2001).

    [20] Semenov A D, Gol’tsman G N, Sobolevski R et al. Hot-electron effect in superconductors and its application for radiation sensors[J]. Superconductor Science and Technology, 15, R1-R16(2002). http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2002SuScT..15R...1S

    [21] Semenov A, Engel A, Hübers H W et al. Probability of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips[EB/OL]. (2004-12-07) [2021-02-01]. https://arxiv.org/abs/cond-mat/0410633

    [22] Vinokur A G A V M. Comment on “vortex-assisted photon count and their magnetic field dependence in single-photon superconducting detectors”[J]. Physical Review B, Condensed Matter, 86, 026501(2012).

    [23] Semenov A D, Haas P, Hübers H W et al. Vortex-based single-photon response in nanostructured superconducting detectors[J]. Physica C: Superconductivity and Its Applications, 468, 627-630(2008). http://www.sciencedirect.com/science/article/pii/S0921453408000713

    [24] Zotova A N, Vodolazov D Y. Photon detection by current-carrying superconducting film: a time-dependent Ginzburg-Landau approach[J]. Physical Review B, 85, 024509(2012). http://smartsearch.nstl.gov.cn/paper_detail.html?id=ec4960e1d58cc3d5393ccf0413cce712

    [25] Hu P, Li H, You L X et al. Detecting single infrared photons toward optimal system detection efficiency[J]. Optics Express, 28, 36884-36891(2020). http://arxiv.org/abs/2009.14690

    [26] Shibata H, Fukao K, Kirigane N et al. SNSPD with ultimate low system dark count rate using various cold filters[J]. IEEE Transactions on Applied Superconductivity, 27, 1-4(2017). http://ieeexplore.ieee.org/document/7752769/

    [27] Yang X Y, Li H, Zhang W J et al. Superconducting nanowire single photon detector with on-chip bandpass filter[J]. Optics Express, 22, 16267-16272(2014). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-13-16267

    [28] Korzh B, Zhao Q Y, Allmaras J P et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector[J]. Nature Photonics, 14, 250-255(2020). http://www.nature.com/articles/s41566-020-0589-x

    [29] Miki S, Yamashita T, Wang Z et al. A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection[J]. Optics Express, 22, 7811-7820(2014).

    [30] Huang Y, Wang L, Hu W D et al. Efficient signal emitters and detectors[J]. Scientia Sinica (Informationis), 46, 1035-1052(2016).

    [31] You L X, Li H, Zhang W J et al. Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths[J]. Superconductor Science and Technology, 30, 084008(2017). http://adsabs.harvard.edu/abs/2017SuScT..30h4008Y

    [32] Zhou H, Pan Y M, You L X et al. Superconducting nanowire single photon detector with efficiency over 60% for 2-μm-wavelength[J]. IEEE Photonics Journal, 11, 1-7(2019).

    [33] Wang H Q, Li H, You L X et al. Fast and high efficiency superconducting nanowire single-photon detector at 630 nm wavelength[J]. Applied Optics, 58, 1868-1872(2019). http://www.researchgate.net/publication/331531708_Fast_and_high_efficiency_superconducting_nanowire_single-photon_detector_at_630_nm_wavelength

    [34] Reddy D V, Nerem R R, Nam S W et al. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm[J]. Optica, 7, 1649-1653(2020).

    [35] le Jeannic H, Verma V B, Cavaillès A et al. High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared[J]. Optics Letters, 41, 5341-5344(2016). http://europepmc.org/abstract/med/27842128

    [36] Zadeh I E, Los J W N, Gourgues R B M et al. Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution[J]. APL Photonics, 2, 111301(2017).

    [37] Lanzagorta M. Quantum radar[J]. Synthesis Lectures on Quantum Computing, 3, 1-139(2011).

    [38] Karp S, Stotts L B. Fundamentals of electro-optic systems design[M](2012).

    [39] Amann M C, Bosch T M, Lescure M et al. Laser ranging: a critical review of unusual techniques for distance measurement[J]. Optical Engineering, 40, 10-19(2001). http://proceedings.spiedigitallibrary.org/journals/optical-engineering/volume-40/issue-01/0000/Laser-ranging--a-critical-review-of-unusual-techniques-for/10.1117/1.1330700.full

    [40] Sun Y C, Pang Y J, Bai Z X et al. Application technology of laser triangulation[J/OL]. Laser Journal: 1-10. [2021-02-01]. http://kns.cnki.net/kcms/detail/50.1085.TN.20201104.1145.002.html

    [41] Becker W. The bh TCSPC handbook[J]. Scanning, 800, 1-566(2010).

    [42] Warburton R E, McCarthy A, Wallace A M et al. Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength[J]. Optics Letters, 32, 2266-2268(2007).

    [43] McCarthy A, Krichel N J, Gemmell N R et al. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection[J]. Optics Express, 21, 8904-8915(2013). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-7-8904

    [44] Xue L, Li M, Zhang L B et al. Long-range laser ranging using superconducting nanowire single-photon detectors[J]. Chinese Optics Letters, 14, 071201(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJ98d5288f22ab18b9

    [45] Xue L, Li Z L, Zhang L B et al. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength[J]. Optics Letters, 41, 3848-3851(2016). http://www.ncbi.nlm.nih.gov/pubmed/27519105

    [46] Zhu J, Chen Y J, Zhang L B et al. Demonstration of measuring sea fog with an SNSPD-based lidar system[J]. Scientific Reports, 7, 15113(2017). http://europepmc.org/abstract/MED/29118415

    [47] Shangguan M J, Xia H Y, Wang C et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector[J]. Optics Letters, 42, 3541-3544(2017). http://www.ncbi.nlm.nih.gov/pubmed/28914897

    [48] Chen S J, Liu D K, Zhang W X et al. Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system[J]. Applied Optics, 52, 3241-3245(2013).

    [49] Zhou H, He Y H, You L X et al. Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector[J]. Optics Express, 23, 14603-14611(2015).

    [50] Yu J, Zhang R L, Gao Y F et al. Intravital confocal fluorescence lifetime imaging microscopy in the second near-infrared window[J]. Optics Letters, 45, 3305-3308(2020). http://www.researchgate.net/publication/341340624_Intravital_confocal_fluorescence_lifetime_imaging_microscopy_in_the_second_near-infrared_window

    [51] Zhao Q Y, Zhu D, Calandri N et al. Single-photon imager based on a superconducting nanowire delay line[J]. Nature Photonics, 11, 247-251(2017). http://www.nature.com/nphoton/journal/v11/n4/abs/nphoton.2017.35.html

    [52] Kong L D, Zhao Q Y, Zheng K et al. Noise-tolerant single-photon imaging with a superconducting nanowire camera[J]. Optics Letters, 45, 6732-6735(2020). http://www.researchgate.net/publication/346692020_Noise-tolerant_single-photon_imaging_with_a_superconducting_nanowire_camera

    [53] Verma V B, Horansky R, Marsili F et al. A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors[J]. Applied Physics Letters, 104, 051115(2014). http://scitation.aip.org/content/aip/journal/apl/104/5/10.1063/1.4864075

    [54] Wollman E E, Verma V B, Lita A E et al. Kilopixel array of superconducting nanowire single-photon detectors[J]. Optics Express, 27, 35279-35289(2019).

    [55] Strekalov D V, Sergienko A V, Klyshko D N et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters, 74, 3600-3603(1995). http://europepmc.org/abstract/MED/10058246

    [56] Bennink R S, Bentley S J, Boyd R W et al. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002). http://europepmc.org/abstract/MED/12225140

    [57] Valencia A, Scarcelli G, D’Angelo M et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 94, 063601(2005).

    [58] Zhang D, Zhai Y H, Wu L G et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 30, 2354-2356(2005). http://www.researchgate.net/publication/7569406_Correlated_two-photon_imaging_with_true_thermal_light

    [59] Saldin D. Ghost imaging with X rays[J]. Physics, 9, 103(2016). http://adsabs.harvard.edu/abs/2016PhyOJ...9..103S

    [60] Takhar D, Laska J N, Wakin M B et al. A new compressive imaging camera architecture using optical-domain compression[J]. Proceedings of the SPIE, 6065, 606509(2006).

    [61] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008). http://nar.oxfordjournals.org/external-ref?access_num=10.1109/MSP.2007.914730&link_type=DOI

    [62] Basset M G, Setzpfandt F, Steinlechner F et al. Perspectives for applications of quantum imaging[J]. Laser & Photonics Reviews, 13, 1900097(2019). http://onlinelibrary.wiley.com/doi/full/10.1002/lpor.201900097

    [63] Li J, Pan Y Y, Li J S et al. Compressive holographic imaging based on single in-line hologram and superconducting nanowire single-photon detector[J]. Optics Communications, 355, 326-330(2015).

    [64] Gerrits T, Allman S, Lum D J et al. Progress toward a high-resolution single-photon camera based on superconducting single photon detector arrays and compressive sensing[C]. //2015 Conference on Lasers and Electro-Optics (CLEO), May 10-15, 2015, San Jose, CA, USA., 1-2(2015).

    [65] Gerrits T, Lum D J, Verma V et al. Short-wave infrared compressive imaging of single photons[J]. Optics Express, 26, 15519-15527(2018). http://www.researchgate.net/publication/325612850_Short-wave_infrared_compressive_imaging_of_single_photons

    [66] Dong S, Zhang W, Huang Y D et al. Long-distance temporal quantum ghost imaging over optical fibers[J]. Scientific Reports, 6, 26022(2016).

    [67] Yao X, Zhang W, Li H et al. Long-distance thermal temporal ghost imaging over optical fibers[J]. Optics Letters, 43, 759-762(2018).

    [68] Yao X, Liu X, You L X et al. Quantum secure ghost imaging[J]. Physical Review A, 98, 063816(2018).

    [69] Xu J J, Bu L B, Liu J Q et al. Airborne high-spectral-resolution lidar for atmospheric aerosol detection[J]. Chinese Journal of Lasers, 47, 0710003(2020).

    [70] Yang J X, Zhu Y D, Wang Q et al. Influence of surface reflectance and aerosol optical depth on performance of spaceborne integral path differential absorption lidar[J]. Chinese Journal of Lasers, 46, 0910001(2019).

    [71] Zhang X Y, Jia L, Zhu J et al. Comparison of laser ranging system based on SNSPD and SPAD detectors[J]. Journal of Infrared and Millimeter Waves, 37, 378-384(2018).

    [72] Zadeh I E, Los J W N, Gourgues R B M et al. Efficient single-photon detection with 7.7 ps time resolution for photon-correlation measurements[J]. ACS Photonics, 7, 1780-1787(2020).

    [73] Chen B L, Yang Z D, Min M et al. Application requirements and research progress of spaceborne Doppler wind lidar[J]. Laser & Optoelectronics Progress, 57, 190003(2020).

    [74] Wang Y, Tang Q, Ma J T et al. Overview of 2020 precision guided weapons guidance technology development[J]. Aerodynamic Missile Journal, 31-38(2021).

    [75] Chen L, Schwarzer D, Verma V B et al. Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science[J]. Accounts of Chemical Research, 50, 1400-1409(2017). http://europepmc.org/abstract/MED/28573866

    [76] Chen L, Lau J A, Schwarzer D et al. The sommerfeld ground-wave limit for a molecule adsorbed at a surface[J]. Science, 363, 158-161(2019). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112830702.html

    [77] Lau J A, Chen L, Choudhury A et al. Transporting and concentrating vibrational energy to promote isomerization[J]. Nature, 589, 391-395(2021). http://www.nature.com/articles/s41586-020-03081-y

    [78] Chen L, Schwarzer D, Lau J A et al. Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution[J]. Optics Express, 26, 14859-14868(2018). http://www.ncbi.nlm.nih.gov/pubmed/30114791

    [79] Dam J S, Lichtenberg P T, Pedersen C et al. Room-temperature mid-infrared single-photon spectral imaging[J]. Nature Photonics, 6, 788-793(2012). http://www.nature.com/nphoton/journal/v6/n11/full/nphoton.2012.231.html

    [80] Korneeva Y, Vodolazov D, Semenov A et al. Optical single-photon detection in micrometer-scale NbN bridges[J]. Physical Review Applied, 9, 064037(2018).

    [81] Charaev I, Morimoto Y, Dane A et al. Large-area microwire MoSi single-photon detectors at 1550 nm wavelength[J]. Applied Physics Letters, 116, 242603(2020).

    [82] Shibata H, Takesue H, Honjo T et al. Single-photon detection using magnesium diboride superconducting nanowires[J]. Applied Physics Letters, 97, 212504(2010). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5645585

    [83] Ejrnaes M, Parlato L, Arpaia R et al. Observation of dark pulses in 10 nm thick YBCO nanostrips presenting hysteretic current voltage characteristics[J]. Superconductor Science and Technology, 30, 12LT02(2017).

    [84] Kotsubo V, Radebaugh R, Hendershott P et al. Compact 2.2 K cooling system for superconducting nanowire single photon detectors[J]. IEEE Transactions on Applied Superconductivity, 27, 1-5(2017).

    [85] Gemmell N R, Hills M, Bradshaw T et al. A miniaturized 4 K platform for superconducting infrared photon counting detectors[J]. Superconductor Science and Technology, 30, 11LT01(2017).

    [86] You L X, Quan J, Wang Y et al. Superconducting nanowire single photon detection system for space applications[J]. Optics Express, 26, 2965-2971(2018).

    [87] You L X. Miniaturizing superconducting nanowire single-photon detection systems[J]. Superconductor Science and Technology, 31, 040503(2018). http://adsabs.harvard.edu/abs/2018SuScT..31d0503Y

    Hui Zhou, Chengjun Zhang, Chaolin Lü, Xingyu Zhang, Hao Li, Lixing You, Zhen Wang. Recent Progress of Imaging Applications Based on Superconducting Nanowire Single-Photon Detectors[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011005
    Download Citation