• Laser & Optoelectronics Progress
  • Vol. 57, Issue 5, 052401 (2020)
Mengmeng Wang1、2, Liyu Yun3, Yifei Wang1、2, Xiaoyu Yang1、2, Feng Wen2, and Shubin Yan1、2、*
Author Affiliations
  • 1Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan, Shanxi 0 30051, China;
  • 2School of Instrument and Electronics, North University of China, Taiyuan, Shanxi 0 30051, China
  • 3The people's Armed Police Command College China, Tianjin 300250, China
  • show less
    DOI: 10.3788/LOP57.052401 Cite this Article Set citation alerts
    Mengmeng Wang, Liyu Yun, Yifei Wang, Xiaoyu Yang, Feng Wen, Shubin Yan. Plasma Refractive Index Nanosensor Based on Fano Resonance[J]. Laser & Optoelectronics Progress, 2020, 57(5): 052401 Copy Citation Text show less
    References

    [1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [2] Haddouche I, Cherbi L. Comparison of finite element and transfer matrix methods for numerical investigation of surface plasmon waveguides[J]. Optics Communications, 382, 132-137(2017).

    [3] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 4, 83-91(2010).

    [4] Yin Y, Qiu T, Li J et al. Plasmonic nano-lasers[J]. Nano Energy, 1, 25-41(2012).

    [5] Xiao G L, Xu J L, Yang H Y et al. A plasmon multi-channel wavelength-division multiplexer constructed with a nanodisk structure embedded in a rectangular metal block[J]. Acta Optica Sinica, 38, 1206006(2018).

    [6] Chen Y, Luo P, Tian Y N et al. Fano resonance slow light characteristics of metal-dielectric-metal waveguide coupled ring cavity with metallic double-slit[J]. Acta Optica Sinica, 37, 0924002(2017).

    [7] Chen Y, Xu Y M, Gao X B et al. Fano resonance sensing characteristics of MIM waveguide coupled T-shaped cavity structure with rectangular cavity[J]. Chinese Journal of Lasers, 46, 0113001(2019).

    [8] Chen Y, Cao J G, Xu Y M et al. Fano resonance sensing characteristics of metal-dielectric-metal waveguide coupling square cavity with bimetallic baffle[J]. Chinese Journal of Lasers, 46, 0213001(2019).

    [9] Sarkaleh A, Lahijani B, Saberkari H et al. Optical ring resonators: a platform for biological sensing applications[J]. Journal of Medical Signals & Sensors, 7, 185-191(2017).

    [10] Tsigaridas G N. A study on refractive index sensors based on optical micro-ring resonators[J]. Photonic Sensors, 7, 217-225(2017).

    [11] Zhang Z, Shi F H, Chen Y H. Tunable multichannel plasmonic filter based on coupling-induced mode splitting[J]. Plasmonics, 10, 139-144(2015).

    [12] Wang S W, Li Y, Xu Q J et al. A MIM filter based on a side-coupled crossbeam square-ring resonator[J]. Plasmonics, 11, 1291-1296(2016).

    [13] Ma F S, Lee C. Optical nanofilters based on meta-atom side-coupled plasmonics metal-insulator-metal waveguides[J]. Journal of Lightwave Technology, 31, 2876-2880(2013).

    [14] Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J]. Applied Physics Letters, 87, 131102(2005).

    [15] Zhang Z D, Wang H Y, Zhang Z Y. Fano resonance in a gear-shaped nanocavity of the metal-insulator-metal waveguide[J]. Plasmonics, 8, 797-801(2013).

    [16] Piao X J, Yu S, Koo S et al. Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures[J]. Optics Express, 19, 10907-10912(2011).

    [17] Yu S, Piao X J, Hong J et al. Progress toward high-Q perfect absorption: a Fano antilaser[J]. Physical Review A, 92, 011802(2015).

    [18] Yan X C, Wang T, Han X et al. High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators[J]. Plasmonics, 12, 1449-1455(2017).

    [19] Piao X J, Yu S, Park N. Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator[J]. Optics Express, 20, 18994-18999(2012).

    [20] Peng B, Özdemir Ş K, Chen W et al. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities[J]. Nature Communications, 5, 5082(2014).

    [21] Chen Z, Yu L, Wang L et al. Sharp asymmetric line shapes in a plasmonic waveguide system and its application in nanosensor[J]. Journal of Lightwave Technology, 33, 3250-3253(2015).

    [22] Ma S B, Liu Q, Qian X C et al. Controllability study of surface plasmon resonance spectra of aluminium nanoparticles[J]. Acta Optica Sinica, 37, 0931001(2017).

    [23] Yun B F, Hu G H, Zhang R H et al. Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator[J]. Journal of Optics, 18, 055002(2016).

    [24] Chen Z, Wang W H, Cui L N et al. Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system[J]. Plasmonics, 10, 721-727(2015).

    [25] Wen K H, Hu Y H, Chen L et al. Single/dual Fano resonance based on plasmonic metal-dielectric-metal waveguide[J]. Plasmonics, 11, 315-321(2016).

    [26] Qiao L T, Zhang G M, Wang Z S et al. Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons[J]. Optics Communications, 433, 144-149(2019).

    [27] Zhang Z D, Luo L, Xue C Y et al. Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors[J]. Sensors, 16, 642(2016).

    [28] Kekatpure R D, Hryciw A C, Barnard E S et al. Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator[J]. Optics Express, 17, 24112-24129(2009).

    [29] Gai H F, Wang J, Tian Q. Modified Debye model parameters of metals applicable for broadband calculations[J]. Applied Optics, 46, 2229-2233(2007).

    [30] Ren X B, Ren K, Cai Y X. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system[J]. Applied Optics, 56, H1-H9(2017).

    Mengmeng Wang, Liyu Yun, Yifei Wang, Xiaoyu Yang, Feng Wen, Shubin Yan. Plasma Refractive Index Nanosensor Based on Fano Resonance[J]. Laser & Optoelectronics Progress, 2020, 57(5): 052401
    Download Citation