• Photonics Research
  • Vol. 9, Issue 10, 2037 (2021)
Jing Liu1、5、*, Flavia Artizzu2、3、6、*, Min Zeng2, Luca Pilia4, Pieter Geiregat2, and Rik Van Deun2
Author Affiliations
  • 1Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
  • 2Department of Chemistry, Ghent University, B-9000 Ghent, Belgium
  • 3Department of Sciences and Technological Innovation, University of Eastern Piedmont “Amedeo Avogadro”, 15121 Alessandria, Italy
  • 4Department of Mechanical, Chemical and Material Engineering, University of Cagliari, 09123 Cagliari, Italy
  • 5e-mail: jingliu77@swu.edu.cn
  • 6e-mail: flavia.artizzu@ugent.be
  • show less
    DOI: 10.1364/PRJ.433192 Cite this Article Set citation alerts
    Jing Liu, Flavia Artizzu, Min Zeng, Luca Pilia, Pieter Geiregat, Rik Van Deun. Dye-sensitized Er3+-doped CaF2 nanoparticles for enhanced near-infrared emission at 1.5 μm[J]. Photonics Research, 2021, 9(10): 2037 Copy Citation Text show less
    References

    [1] J. Liu, A. M. Kaczmarek, R. V. Deun. Advances in tailoring luminescent rare-earth mixed inorganic materials. Chem. Soc. Rev., 47, 7225-7238(2018).

    [2] J.-C. G. Bünzli, C. Piguet. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev., 34, 1048-1077(2005).

    [3] F. Artizzu, F. Quochi, L. Marchiò, C. Figus, D. Loche, M. Atzori, V. Sarritzu, A. M. Kaczmarek, R. V. Deun, M. Saba, A. Serpe, A. Mura, M. L. Mercuri, G. Bongiovanni, P. Deplano. Light conversion control in NIR-emissive optical materials based on heterolanthanide ErxYb3–x quinolinolato molecular components. Chem. Mater., 27, 4082-4092(2015).

    [4] S. L. Zuo, P. Chen, C. F. Pan. Mechanism of magnetic field-modulated luminescence from lanthanide ions in inorganic crystal: a review. Rare Met., 39, 1113-1126(2020).

    [5] D. Tu, L. Liu, Q. Ju, Y. Liu, H. Zhu, R. Li, X. Chen. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angew. Chem., 50, 6306-6310(2011).

    [6] J. Liu, A. M. Kaczmarek, F. Artizzu, R. V. Deun. Ultraefficient cascade energy transfer in dye-sensitized core/shell fluoride nanoparticles. ACS Photon., 6, 659-666(2019).

    [7] J. B. Zhao, L. L. Wu. Yb3+- and Er3+-doped Y2O3 microcrystals for upconversion photoluminescence and energy transfer with enhancements of near-ultraviolet emission. Rare Met., 40, 123-127(2021).

    [8] J.-C. G. Bünzli, A.-S. Chauvin. Lanthanides in Solar Energy Conversion(2014).

    [9] T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, M. Horiguchi. Amplification in erbium-doped silica-based planar lightwave circuits. Electron. Lett., 28, 1818-1819(1992).

    [10] Y. C. Yan, A. J. Faber, H. De Waal, A. P. Polman, G. Kik. Erbium-doped phosphate glass waveguide on silicon with 4.1  dB/cm gain at 1.535  μm. Appl. Phys. Lett., 71, 2922-2924(1997).

    [11] W. You, Y. Huang, Y. Chen, Y. Lin, Z. Luo. The Yb3+ to Er3+ energy transfer in YAl3(BO3)4 crystal. Opt. Commun., 281, 4936-4939(2008).

    [12] J. Zhou, D. Jin. Triplet state brightens upconversion. Nat. Photonics, 12, 378-379(2018).

    [13] X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, H. Ågren, C. Yang, G. Chen. Dye-sensitized lanthanide-doped upconversion nanoparticles. Chem. Soc. Rev., 46, 4150-4167(2017).

    [14] Q. Liu, X. Zou, Y. Shi, B. Shen, C. Cao, S. Cheng, W. Feng, F. Li. An efficient dye-sensitized NIR emissive lanthanide nanomaterial and its application in fluorescence-guided peritumoral lymph node dissection. Nanoscale, 10, 12573-12581(2018).

    [15] D. Mara, F. Artizzu, P. F. Smet, A. M. Kaczmarek, K. V. Hecke, R. V. Deun. Vibrational quenching in near-infrared emitting lanthanide complexes: a quantitative experimental study and novel insights. Chem. Eur. J., 25, 15944-15956(2019).

    [16] J. Zhang, C. M. Shade, D. A. Chengelis, S. Petoud. A strategy to protect and sensitize near-infrared luminescent Nd3+ and Yb3+: organic tropolonate ligands for the sensitization of Ln3+-doped NaYF4 nanocrystals. J. Am. Chem. Soc., 129, 14834-14835(2007).

    [17] B. Xue, D. Wang, L. Tu, D. Sun, P. Jing, Y. Chang, Y. Zhang, X. Liu, J. Zuo, J. Song, J. Qu, E. J. Meijer, H. Zhang, X. Kong. Ultrastrong absorption meets ultraweak absorption: unraveling the energy-dissipative routes for dye-sensitized upconversion luminescence. J. Phys. Chem. Lett., 9, 4625-4631(2018).

    [18] D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, P. J. Schuck. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat. Photonics, 12, 402-407(2018).

    [19] Z. Wang, A. Meijerink. Dye-sensitized downconversion. J. Phys. Chem. Lett., 9, 1522-1526(2018).

    [20] L. Yuan, W. Lin, K. Zheng, L. He, W. Huang. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev., 42, 622-661(2013).

    [21] T. Y. Lin, Z. J. Lian, C. X. Yao, X. Y. Sun, X. Y. Liu, Z. Y. Yan, S. M. Wu. CdSe quantum dots labeled Staphylococcus aureus for research studies of THP-1 derived macrophage phagocytic behavior. RSC Adv., 10, 260-270(2020).

    [22] L. W. Runnels, S. F. Scarlata. Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys. J., 69, 1569-1583(1995).

    [23] R. G. McClelland, A. C. Pinder. Detection of Salmonella typhimurium in dairy products with flow cytometry and monoclonal antibodies. Appl. Environ. Microbiol., 60, 4255-4262(1994).

    [24] P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, X. Chen. Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers. Angew. Chem., 126, 1276-1281(2014).

    [25] Z. Li, Y. Zhang, L. Huang, Y. Yang, Y. Zhao, G. El-Banna, G. Han. Nanoscale ‘fluorescent stone’: luminescent calcium fluoride nanoparticles as theranostic platforms. Theranostics, 6, 2380-2393(2016).

    [26] B. Xu, D. Li, Z. Huang, C. Tang, W. Mo, Y. Ma. Alleviating luminescence concentration quenching in lanthanide doped CaF2 based nanoparticles through Na+ ion doping. Dalton Trans., 47, 7534-7540(2018).

    [27] W. Yin, G. Tian, W. Ren, L. Yan, S. Jin, Z. Gu, L. Zhou, J. Li, Y. Zhao. Design of multifunctional alkali ion doped CaF2 upconversion nanoparticles for simultaneous bioimaging and therapy. Dalton Trans., 43, 3861-3870(2014).

    [28] S. Wen, J. Zhou, P. J. Schuck, Y. D. Suh, T. W. Schmidt, D. Jin. Future and challenges for hybrid upconversion nanosystems. Nat. Photonics, 13, 828-838(2019).

    [29] J. C. Boyer, F. Vetrone, L. A. Cuccia, J. A. Capobianco. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc., 128, 7444-7445(2006).

    [30] B. Xu, H. He, Z. Gu, S. Jin, Y. Ma, T. Zhai. Improving 800  nm triggered upconversion emission for lanthanide-doped CaF2 nanoparticles through sodium ion doping. J. Phys. Chem. C, 121, 18280-18287(2017).

    [31] R. G. Parr, W. Yang. Density Functional Theory of Atoms and Molecules(1989).

    [32] A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, 5648-5652(1993).

    [33] C. Lee, W. Yang, R. G. Parr. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789(1988).

    [34] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox. Gaussian 16 Rev. C.01(2016).

    [35] M. Cossi, N. Rega, G. Scalmani, V. Barone. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comp. Chem., 24, 669-681(2003).

    [36] M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys., 108, 4439-4449(1998).

    [37] R. E. Stratmann, G. E. Scuseria, M. J. Frisch. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys., 109, 8218-8224(1998).

    [38] A. D. McLean, G. S. Chandler. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys., 72, 5639-5648(1980).

    [39] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys., 72, 650-654(1980).

    [40] M. A. Thompson. ArgusLab 4.0.1, Planaria Software LLC: Seattle, WA.

    [41] C. Du, H. Wang, F. Yang, P. C. Hammel. Systematic variation of spin-orbit coupling with d-orbital filling: large inverse spin Hall effect in 3D transition metals. Phys. Rev. B, 90, 140407(2014).

    [42] M. He, P. Huang, C. Zhang, F. Chen, C. Wang, J. Ma, R. He, D. Cui. A general strategy for the synthesis of upconversion rare earth fluoride nanocrystals via a novel OA/ionic liquid two-phase system. Chem. Commun., 47, 9510-9512(2011).

    [43] M. Verziu, M. Serano, B. Jurca, V. I. Parvulescu, S. M. Coman, G. Scholz, E. Kemnitz. Catalytic features of Nb-based nanoscopic inorganic fluorides for an efficient one-pot conversion of cellulose to lactic acid. Catal. Today, 306, 102-110(2018).

    [44] W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, J. C. Hummelen. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics, 6, 560-564(2012).

    [45] W. Shao, C. K. Lim, Q. Li, M. T. Swihart, P. N. Prasad. Dramatic enhancement of quantum cutting in lanthanide-doped nanocrystals photosensitized with an aggregation-induced enhanced emission dye. Nano Lett., 18, 4922-4926(2018).

    [46] J. J. Nogueira, M. Oppel, L. González. Enhancing intersystem crossing in phenotiazinium dyes by intercalation into DNA. Angew. Chem., 54, 4375-4378(2015).

    [47] S. J. Strickler, R. A. Berg. Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys., 37, 814-822(1962).

    [48] P. Geiregat, J. Maes, K. Chen, E. Drijvers, J. De Roo, J. M. Hodgkiss, Z. Hens. Using bulk-like nanocrystals to probe intrinsic optical gain characteristics of inorganic lead halide perovskites. ACS Nano, 12, 10178-10188(2018).

    [49] W. R. Browne, J. G. Vos. The effect of deuteriation on the emission lifetime of inorganic compounds. Coord. Chem. Rev., 219, 761-787(2001).

    [50] J. Liu, P. Geiregat, L. Pilia, R. Van Deun, F. Artizzu. Molecular size matters: ultrafast dye singlet sensitization pathways to bright nanoparticle emission. Adv. Opt. Mater., 9, 2001678(2021).

    [51] T. Förster. 10th Spiers memorial lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc., 27, 7-17(1959).

    [52] W. Wei, G. Chen, A. Baev, G. S. He, W. Shao, J. Damasco, P. N. Prasad. Alleviating luminescence concentration quenching in upconversion nanoparticles through organic dye sensitization. J. Am. Chem. Soc., 138, 15130-15133(2016).

    Jing Liu, Flavia Artizzu, Min Zeng, Luca Pilia, Pieter Geiregat, Rik Van Deun. Dye-sensitized Er3+-doped CaF2 nanoparticles for enhanced near-infrared emission at 1.5 μm[J]. Photonics Research, 2021, 9(10): 2037
    Download Citation