• Infrared and Laser Engineering
  • Vol. 49, Issue 6, 20190423 (2020)
Kong Hui1,2, Bian Jintian1,2,*, Ye Qing1,2, Yao Jiyong3..., Wu Chang1,2 and Sun Xiaoquan1,2|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla20190423 Cite this Article
    Kong Hui, Bian Jintian, Ye Qing, Yao Jiyong, Wu Chang, Sun Xiaoquan. Comparison of mid-infrared laser generated by optical parametric oscillation of BaGa4Se7 and KTiAsO4[J]. Infrared and Laser Engineering, 2020, 49(6): 20190423 Copy Citation Text show less

    Abstract

    Both BaGa4Se7 (BGSe) and KTiAsO4 (KTA) can generate mid-infrared lasers pumped by 1.06 μm laser. Firstly, the phase matching curves of two kinds of non-linear crystals were simulated and calculated. The results show that BGSe with cutting angles of (56.3°, 0°) and KTA with cutting angle of (90°, 0°) can generate idle frequency light of ~3.5 micron under phase matching conditions of type I and type II-A, respectively. Then through theoretical calculation, the effective non-linear coefficients of BGSe (56.3°, 0°, type-I) is ?11.9 pm/V, and that of KTA (90°, 0°, type II-A) is ?3.2 pm/V. The OPO oscillation threshold of 15 mm long BGSe (56.3°, 0°, type-I) is 35.11% of that of 20 mm long KTA (90°, 0°, type II-A). Then, the experimental results show that the oscillation threshold of BGSe-OPO (56.3°, 0°, type-I, 15 mm) is smaller than that of KTA-OPO (90°, 0°, type-II-A, 20 mm). The output energy of BGSe (56.3°, 0°, type-I) is larger than that of KTA (90°, 0°, type II-A). Therefore, BGSe is a promising mid-infrared non-linear crystal.
    $ \left\{nx2=6.72431+0.26375λ20.04248+602.97λ2749.87ny2=6.86603+0.26816λ20.04259+682.97λ2781.78nz2=7.16709+0.32681λ20.06973+731.86λ2790.160.901λ10.591\right. $(1)

    View in Article

    $ {{{n}}}_{i}^{2}={{{A}}}_{i}+\frac{{{{B}}}_{i}{{{\lambda}}}^{{p}_{i}}}{{{{\lambda}}}^{{p}_{i}}-{{{C}}}_{i}}+\frac{{{{D}}}_{i}{{{\lambda}}}^{{q}_{i}}}{{{{\lambda}}}^{{q}_{i}}-{{{E}}}_{i}} $(2)

    View in Article

    $ \left\{ne1(θ,ϕ)=2[d+A(b22bB+A2)1/2]12ne2(θ,ϕ)=2[d+A+(b22bB+A2)1/2]12A=kz2ckx2aB=kz2c+kx2aa=1nx21ny2b=1nx21nz2c=1ny21nz2d=1nx2+1nz2kx=sinθcosθ,ky=sinθsinθ,kz=cosθ\right. $(3)

    View in Article

    $ \left\{\!\!\!typeIne2ω3λ3=ne1ω1λ1+ne1ω2λ21λ3=1λ1+1λ2\right.\left\{\!\!\!typeIIA1λ3=1λ1+1λ2ne2ω3λ3=ne2ω1λ1+ne1ω2λ2\right.\left\{\!\!\!typeIIB1λ3=1λ1+1λ2ne2ω3λ3=ne1ω1λ1+ne2ω2λ2\right. $(4)

    View in Article

    $deff=[b1(ω3),b2(ω3),b3(ω3)]×(d11d21d31d12d22d32d13d23d33d14d24d34d15d25d35d16d26d36)×(a1(ω1)a1(ω2)a2(ω1)a2(ω2)a3(ω1)a3(ω2)a2(ω1)a3(ω2)+a3(ω1)a2(ω2)a1(ω1)a3(ω2)+a3(ω1)a1(ω2)a1(ω1)a2(ω2)+a2(ω1)a1(ω2)) $ (5)

    View in Article

    $(b1b2b3)=(b_d1/nx2b_d2/ny2b_d3/nz2)1(bd1nx2)2+(bd2ny2)2+(bd3nz2)2,(b_d1b_d2b_d3)=(cosθcosθsinδsinθcosδcosθsinθsinδ+cosθcosδsinθsinδ) $ (6)

    View in Article

    $(a1a2a3)=(a_d1/nx2a_d2/ny2a_d3/nz2)1(ad1nx2)2+(ad2ny2)2+(ad3nz2)2,(a_d1a_d2a_d3)=(cosθcosθcosδsinθsinδcosθsinθcosδ+cosθsinδsinθcosδ) $ (7)

    View in Article

    $ {{{d}}}_{{\rm{i}}{\rm{j}}}=\left(05.21.2024.33.7020.42.203.720.41.2005.200\right) $(8)

    View in Article

    $deff=[b1(ω3),b2(ω3),b3(ω3)]×(d11d21d31d12d22d32d13d23d33d14d24d34d15d25d35d16d26d36)×(b1(ω1)a1(ω2)b2(ω1)a2(ω2)b3(ω1)a3(ω2)b2(ω1)a3(ω2)+b3(ω1)a2(ω2)b3(ω1)a1(ω2)+b1(ω1)a3(ω2)b1(ω1)a2(ω2)+b2(ω1)a1(ω2)) $ (9)

    View in Article

    $ {{{d}}_{{{ij}}}} = \left( {0000002.84.216.2{\rm{}}02.303.200000} \right) $ (10)

    View in Article

    ${{{J}}_{{\rm{th}}}} = \frac{{2.25{{\tau }}}}{{{{\kappa }}{{{g}}_{{s}}}{{L}}_{{\rm{eff}}}^2}}{\left[ {\frac{{{L}}}{{2{{c\tau }}}}{\rm{ln}}33 + 2{{\alpha l}} + \ln \frac{1}{{\sqrt {{R}} }} + {\rm{ln}}2} \right]^2}$(11)

    View in Article

    $ Jth=2.25nsninpε0c3(wp2+ws2)2ωsωideff2wp2Leff2τ[L2cτln33+2αl+ln1R+ln2]2=2.25λsλinsninpε0c2(2π)2deff2Leff2(wp2+ws2)wp2τ[L2cτln33+2αl+1R+ln2]2 $ (12)

    View in Article

    $JthBGSe=1.9928×1011(wp2+ws2)wp2[L2cτln33+2αl+ln1R+ln2]2(W/m2) $ (13)

    View in Article

    $JthKTA=5.6764×1011(wp2+ws2)wp2[L2cτln33+2αl+ln1R+ln2]2(W/m2) $ (14)

    View in Article

    $ \frac{{{{{I}}_{{\rm{th}}}}\left( {{\rm{BGSe}}} \right)}}{{{{{I}}_{{\rm{th}}}}\left( {{\rm{KTA}}} \right)}} = 0.351\;1 $ (15)

    View in Article

    Kong Hui, Bian Jintian, Ye Qing, Yao Jiyong, Wu Chang, Sun Xiaoquan. Comparison of mid-infrared laser generated by optical parametric oscillation of BaGa4Se7 and KTiAsO4[J]. Infrared and Laser Engineering, 2020, 49(6): 20190423
    Download Citation