• Opto-Electronic Engineering
  • Vol. 48, Issue 3, 200183 (2021)
Zheng Qilin, Wen Long, and Chen Qin*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2021.200183 Cite this Article
    Zheng Qilin, Wen Long, Chen Qin. Research progress of computational microspectrometer based on speckle inspection[J]. Opto-Electronic Engineering, 2021, 48(3): 200183 Copy Citation Text show less
    References

    [2] Yang T, Peng J X, Ho H P, et al. Visible-infrared micro-spectrometer based on a preaggregated silver nanoparticle monolayer film and an infrared sensor card[J]. Proc SPIE, 2018, 10616: 1061610.

    [3] Pang Y J, Zhang Y X, Yang H D, et al. Compact broadband high-resolution infrared spectrometer with a dihedral reflector[J]. Opt Express, 2017, 25(13): 14960–14967.

    [4] Yang T, Zhang Y, Ge J C, et al. Compact terahertz spectrometer based on sequential modulation of disordered rough surfaces[J]. Opt Lett, 2019, 44(24): 6061–6064.

    [5] Avrutsky I, Salakhutdinov I, Chaganti K. Diffractive imaging micro-spectrometer[J]. Proc SPIE, 2006, 6388: 63880Q.

    [6] Podmore H, Scott A, Lee R, et al. A compressive-sensing fourier-transform on-chip Raman spectrometer[J]. Photonic Instrum Eng V, 2018, 10539: 105390L.

    [7] Ballard Z S, Shir D, Bhardwaj A, et al. Computational sensing using low-cost and mobile plasmonic readers designed by machine learning[J]. ACS Nano, 2017, 11(2): 2266–2274.

    [8] Reinig P, Grüger H, Knobbe J, et al. Bringing NIR spectrometers into mobile phones[J]. Proc SPIE, 2018, 10545: 105450F.

    [9] McGonigle A J S, Wilkes T C, Pering T D, et al. Smartphone spectrometers[J]. Sensors (Basel), 2018, 18(1): 223.

    [10] Bao J, Bawendi M G. A colloidal quantum dot spectrometer[J]. Nature, 2015, 523(7558): 67–70.

    [11] Faraji-Dana M, Arbabi E, Arbabi A, et al. Compact folded metasurface spectrometer[J]. Nat Commun, 2018, 9(1): 4196.

    [12] Craig B, Shrestha V R, Meng J J, et al. Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces[J]. Opt Lett, 2018, 43(18): 4481–4484.

    [13] Cerjan B, Halas N J. Toward a nanophotonic nose: a compressive sensing-enhanced, optoelectronic mid-infrared spectrometer[J]. ACS Photonics, 2019, 6(1): 79–86.

    [14] Yang T, Huang X L, Ho H P, et al. Compact spectrometer based on a frosted glass[J]. IEEE Photonics Techno Lett, 2017, 29(2): 217–220.

    [15] Yang Z Y, Albrow-Owen T, Cui H X, et al. Single-nanowire spectrometers[J]. Science, 2019, 365(6457): 1017–1020.

    [16] Pichette J, Charle W, Lambrechts A. Fast and compact internal scanning CMOS-based hyperspectral camera: the Snapscan[J]. Proc SPIE, 2017, 10110: 1011014.

    [17] Yokino T, Kato K, Ui A, et al. Grating-based ultra-compact SWNIR spectral sensor head developed through MOEMS technology[J]. Proc SPIE, 2019, 10931: 1093108.

    [18] Chen Q, Liang L, Zheng Q L, et al. On-chip readout plasmonic mid-IR gas sensor[J]. Opto-Electron Adv, 2020, 3(3): 190040.

    [19] Cao H. Perspective on speckle spectrometers[J]. J Opt, 2017, 19(6): 060402.

    [22] Redding B, Popoff S M, Cao H. All-fiber spectrometer based on speckle pattern reconstruction[J]. Opt Express, 2013, 21(5): 6584–6600.

    [23] Sefler G A, Shaw T J, Valley G C. Demonstration of speckle-based compressive sensing system for recovering RF signals[J]. Opt Express, 2018, 26(17): 21390–21402.

    [24] Halpaap D, Tiana-Alsina J, Vilaseca M, et al. Experimental characterization of the speckle pattern at the output of a multimode optical fiber[J]. Opt Express, 2019, 27(20): 27737–27744.

    [25] Meng J J, Cadusch J J, Crozier K B. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm[J]. Nano Lett, 2020, 20(1): 320–328.

    [26] Kurokawa U, Choi B I, Chang C C. Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization[J]. IEEE Sens J, 2011, 11(7): 1556–1563.

    [27] Redding B, Popoff S M, Bromberg Y, et al. Noise analysis of spectrometers based on speckle pattern reconstruction[J]. Appl Opt, 2014, 53(3): 410–417.

    [28] Yee G M, Maluf N I, Hing P A, et al. Miniature spectrometers for biochemical analysis[J]. Sens Actuators A Phys, 1997, 58(1): 61–66.

    [29] Ma X, Li M Y, He J J. CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array[J]. IEEE Photonics J, 2013, 5(2): 6600807.

    [30] Chang C C, Lin N T, Kurokawa U, et al. Spectrum reconstruction for filter-array spectrum sensor from sparse template selection[J]. Opt Eng, 2011, 50(11): 114402.

    [31] Kraft M, Kenda A, Frank A, et al. Single-detector micro-electro-mechanical scanning grating spectrometer[J]. Anal Bioanal Chem, 2006, 386(5): 1259–1266.

    [32] Huang E, Ma Q, Liu Z W. Etalon array reconstructive spectrometry[J]. Sci Rep, 2017, 7(1): 40693.

    [33] Wang P, Menon R. Computational spectroscopy via singular-value decomposition and regularization[J]. Opt Express, 2014, 22(18): 21541–21550.

    [34] Valley G C, Sefler G A, Shaw T J. Multimode waveguide speckle patterns for compressive sensing[J]. Opt Lett, 2016, 41(11): 2529–2532.

    [35] Chang C C, Lee H N. On the estimation of target spectrum for filter-array based spectrometers[J]. Opt Express, 2008, 16(2): 1056–1061.

    [37] Brady D J, Gehm M E, Pitsianis N, et al. Compressive sampling strategies for integrated microspectrometers[J]. Intell Integr Microsystems, 2006, 6232: 62320C.

    [38] LU C C, Chen K, Huang L R, et al. Signal recovery for compressive spectrometers[J]. Sens Agric Food Qual Saf X, 2018, 10665: 106650U.

    [39] Chong X Y, Li E W, Squire K, et al. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array[J]. Appl Phys Lett, 2016, 108(22): 221106.

    [40] Kim C, Park D, Lee H N. Convolutional neural networks for the reconstruction of spectra in compressive sensing spectrometers[J]. Opt Data Sci II, 2019, 10937: 109370L.

    [41] Zhang S, Dong Y H, Fu H Y, et al. A spectral reconstruction algorithm of miniature spectrometer based on sparse optimization and dictionary learning[J]. Sensors (Basel), 2018, 18(2): 644.

    [42] Hong L Y, Sengupta K. Fully integrated optical spectrometer in visible and Near-IR in CMOS[J]. IEEE Trans Biomed Circuits Syst, 2017, 11(6): 1176–1191.

    [43] Oliver J, Lee W B, Lee H N. Filters with random transmittance for improving resolution in filter-array-based spectrometers[J]. Opt Express, 2013, 21(4): 3969–3989.

    [44] Feller S D, Chen H J, Brady D J, et al. Multiple order coded aperture spectrometer[J]. Opt Express, 2007, 15(9): 5625–5630.

    [45] Redding B, Cao H. Using a multimode fiber as a high-resolution, low-loss spectrometer[J]. Opt Lett, 2012, 37(16): 3384–3386.

    [46] Redding B, Liew S F, Bromberg Y, et al. Evanescently coupled multimode spiral spectrometer[J]. Optica, 2016, 3(9): 956–962.

    [47] Redding B, Liew S F, Sarma R, et al. Compact spectrometer based on a disordered photonic chip[J]. Nat Photonics, 2013, 7(9): 746–751.

    [48] Liew S F, Redding B, Choma M A, et al. Broadband multimode fiber spectrometer[J]. Opt Lett, 2016, 41(9): 2029–2032.

    [49] Yang T, Xu C, Ho H P, et al. Miniature spectrometer based on diffraction in a dispersive hole array[J]. Opt Lett, 2015, 40(13): 3217–3220.

    [50] Freude W, Fritzsche C, Grau G, et al. Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides[J]. J Lightwave Technol, 1986, 4(1): 64–72.

    [51] Hlubina P. Spectral and dispersion analysis of laser sources and multimode fibres via the statistics of the intensity pattern[J]. J Mod Opt, 1994, 41(5): 1001–1014.

    [52] Yamaguchi I. A laser-speckle strain gauge[J]. J Phys E: Sci Instrum, 1981, 14(11): 1270.

    [53] Yamaguchi I. Speckle displacement and decorrelation in the diffraction and image fields for small object deformation[J]. Opt Acta: Int J Opt, 1981, 28(10): 1359–1376.

    [54] Yamaguchi I, Kobayashi K, Yaroskavsky L P. Measurement of surface roughness by speckle correlation[J]. Opt Eng, 2004, 43(11): 2753–2762.

    [56] Redding B, Alam M, Seifert M, et al. High-resolution and broadband all-fiber spectrometers[J]. Optica, 2014, 1(3): 175–180.

    [58] Coluccelli N, Cassinerio M, Redding B, et al. The optical frequency comb fibre spectrometer[J]. Nat Commun, 2016, 7(1): 12995.

    [59] Meng Z Y, Li J Q, Yin C J, et al. Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing[J]. AIP Adv, 2019, 9(1): 015004.

    [60] Wan N H, Meng F, Schr?der T, et al. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre[J]. Nat Commun, 2015, 6: 7762.

    [61] Kohlgraf-Owens T W, Dogariu A. Transmission matrices of random media: means for spectral polarimetric measurements[J]. Opt Lett, 2010, 35(13): 2236–2238.

    [62] Hang Q, Ung B, Syed I, et al. Photonic bandgap fiber bundle spectrometer[J]. Appl Opt, 2010, 49(25): 4791–4800.

    [63] Piels M, Zibar D. Compact silicon multimode waveguide spectrometer with enhanced bandwidth[J]. Sci Rep, 2017, 7: 43454.

    [64] Pervez N K, Cheng W, Jia Z, et al. Photonic crystal spectrometer[J]. Opt Express, 2010, 18(8): 8277–8285.

    [65] Momeni B, Hosseini E S, Askari M, et al. Integrated photonic crystal spectrometers for sensing applications[J]. Opt Commun, 2009, 282(15): 3168–3171.

    [66] Momeni B, Yegnanarayanan S, Soltani M, et al. Silicon nanophotonic devices for integrated sensing[J]. Journal of Nanophotonics, 2009, 3(1): 031001.

    [67] Soltani M, Li Q, Yegnanarayanan S, et al. Large-scale array of small high-Q microdisk resonators for onchip spectral analysis[C]//2009 IEEE LEOS Annual Meeting Conference Proceedings, 2009: 703–704.

    [68] Xia Z X, Eftekhar A A, Soltani M, et al. Near infrared absorption sensor based on large-scale array of miniaturized microdonut resonators[C]. Integrated Photonics Research, Silicon and Nanophotonics, Optical Society of America, 2010: IME6.

    [69] Xia Z X, Eftekhar A A, Soltani M, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators[J]. Opt Exp, 2011, 19(13): 12356–12364.

    [70] Babin S, Bugrov A, Cabrini S, et al. Digital optical spectrometer-on-chip[J]. Appl Phys Lett, 2009, 95(4): 041105.

    [71] Calafiore G, Koshelev A, Dhuey S, et al. Holographic planar lightwave circuit for on-chip spectroscopy[J]. Light: Sci Appl, 2014, 3(9): e203.

    [72] Wang Z, Yi S, Chen A, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs[J]. Nat Commun, 2019, 10(1): 1020.

    [74] Xu Z C, Wang Z L, Sullivan M, et al. Multimodal multiplex spectroscopy using photonic crystals[J]. Opt Express, 2003, 11(18): 2126–2133.

    [75] Mazilu M, Vettenburg T, Di Falco A, et al. Random super-prism wavelength meter[J]. Opt Lett, 2014, 39(1): 96–99.

    [76] Chakrabarti M, Jakobsen M L, Hanson S G. Speckle-based spectrometer[J]. Opt Lett, 2015, 40(14): 3264–3267.

    [77] Yang T, Peng J X, Li X A, et al. Compact broadband spectrometer based on upconversion and downconversion luminescence[J]. Opt Lett, 2017, 42(21): 4375–4378.

    [78] Wang P, Menon R. Computational spectrometer based on a broadband diffractive optic[J]. Opt Express, 2014, 22(12): 14575–14587.

    [79] Wu L, Cai Z J, Su Y F, et al. Simulative study on speckle-spectral properties of a random pixelated grating[J]. J Opt Soc Am A, 2019, 36(8): 1410–1417.

    [80] etinda K, Toy M F, Ferhanolu O, et al. A speckle-enhanced prism spectrometer with high dynamic range[J]. IEEE Photonics Technol Lett, 2018, 30(24): 2139–2142.

    Zheng Qilin, Wen Long, Chen Qin. Research progress of computational microspectrometer based on speckle inspection[J]. Opto-Electronic Engineering, 2021, 48(3): 200183
    Download Citation