• Infrared and Laser Engineering
  • Vol. 51, Issue 1, 20220015 (2022)
Pu Zhou, Tianfu Yao, Chenchen Fan, Yang Li, Xiulu Hao, Yizhu Chen, Xiaoya Ma, Jiangming Xu, Hu Xiao, Jinyong Leng, and Wei Liu
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/IRLA20220015 Cite this Article
    Pu Zhou, Tianfu Yao, Chenchen Fan, Yang Li, Xiulu Hao, Yizhu Chen, Xiaoya Ma, Jiangming Xu, Hu Xiao, Jinyong Leng, Wei Liu. 50th anniversary of Raman fiber laser: History, progress and prospect (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20220015 Copy Citation Text show less
    References

    [1] T H Maiman. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).

    [2] E J Woodbury, W K Ng. Ruby laser operation in the near IR. Proc IRE, 50, 2367(1962).

    [3] G Eckhardt, R W Hellwarth, F J Mcclung, et al. Stimulated Raman scattering from organic liquids. Physical Review Letters, 9, 455-457(1962).

    [4] C V Raman, K S Krishnan. A new type of secondary radiation. Nature, 121, 501-502(1928).

    [5] E P Ippen. Low-power quasi-CW Raman oscillator. Applied Physics Letters, 16, 303-305(1970).

    [6] R H Stolen, E P Ippen, A R Tynes. Raman oscillation in glass optical waveguide. Applied Physics Letters, 20, 62-64(1972).

    [7] K J Blow, D Wood. Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE Journal of Quantum Electronics, 25, 2665-2673(1989).

    [8] C Headley, G P Agrawal. Unified description of ultrafast stimulated Raman scattering in optical fibers. Journal of the Optical Society of America B, 13, 2170-2177(1996).

    [9] J Santhanam, G P Agrawal. Raman-induced spectral shifts in optical fibers: General theory based on the moment method. Optics Communications, 222, 413-420(2003).

    [10] Q Lin, G P Agrawal. Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers. Journal of the Optical Society of America B, 20, 1616-1631(2003).

    [11] J A Armstrong, N Bloembergen, J Ducuing, et al. Interactions between light waves in a nonlinear dielectric. Physical Review, 127, 1918-1939(1962).

    [12] N Bloembergen, Y R Shen. Multimode effects in stimulated Raman emission. Physical Review Letters, 13, 720-724(1964).

    [13] Y R Shen, N Bloembergen. Theory of stimulated Brillouin and Raman scattering. Physical Review, 137, A1787-A1805(1965).

    [14] N Bloembergen. The stimulated Raman effect. American Journal of Physics, 35, 989-1023(1967).

    [15] F L Galeener, J C Mikkelsen, R H Geils, et al. The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5. Applied Physics Letters, 32, 34-36(1978).

    [16] L Sirleto, Ferrara M Antonietta, T Nikitin, et al. Giant Raman gain in silicon nanocrystals. Nature Communications, 3, 1220(2012).

    [17] L Sirleto, A Vergara, M A Ferrara. Advances in stimulated Raman scattering in nanostructures. Advances in Optics and Photonics, 9, 169-217(2017).

    [18] E M Dianov. Advances in Raman fibers. Journal of Lightwave Technology, 20, 1457-1462(2002).

    [19] R H Stolen. The early years of fiber nonlinear optics. Journal of Lightwave Technology, 26, 1021-1031(2008).

    [20] Feng Y. Raman Fiber Lasers[M]William T Rhodes. Springer Series in Optical Sciences. Berlin: Springer, 2017.

    [21] V R Supradeepa, Y Feng, J W Nicholson. Raman fiber lasers. Journal of Optics, 19, 023001(2017).

    [22] Y Feng, H Jiang, L Zhang. Adcances in high power Raman fiber laser technology. Chinese Journal of Lasers, 44, 0201005(2017).

    [23] Y Glick, Y Shamir, Y Sintov, et al. Brightness enhancement with Raman fiber lasers and amplifiers using multi-mode or multi-clad fibers. Optical Fiber Technology, 52, 101955(2019).

    [24] M N Islam. Raman amplifiers for telecommunications. IEEE Journal of Selected Topics in Quantum Electronics, 8, 548-559(2002).

    [25] S Namiki, K Seo, N Tsukiji, et al. Challenges of Raman amplification. Proceedings of the IEEE, 94, 1024-1035(2006).

    [26] W S Pelouch. Raman amplification: An enabling technology for long-haul coherent transmission systems. Journal of Lightwave Technology, 34, 6-19(2016).

    [27] R G Smith. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Applied Optics, 11, 2489-2494(1972).

    [28] D Gloge. Weakly guiding fibers. Applied Optics, 10, 2252-2258(1971).

    [29] Stolen R H, Lin C. TwoPhoton TwoStep Absption in Glass Optical Waveguide[M]Shashanka S Mitra, Bernard Bendow. Optical Properties of Highly Transparent Solids. Boston, MA: Springer, 1975: 307315.

    [30] A Hasegawa, F Tappert. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics Letters, 23, 142-144(1973).

    [31] R H Stolen, A Ashkin. Optical Kerr effect in glass waveguide. Applied Physics Letters, 22, 294-296(1973).

    [32] R H Stolen, E P Ippen. Raman gain in glass optical waveguides. Applied Physics Letters, 22, 276-278(1973).

    [33] Stolen R H. Raman Raman gain spectroscopy in optical fibers[C]Proc 3rd Int Conf Light Scattering in Solids, 1976.

    [34] C Lin, R H Stolen. Backward Raman amplification and pulse steepening in silica fibers. Applied Physics Letters, 29, 428-431(1976).

    [35] K O Hill, B S Kawasaki, D C Johnson. Low‐threshold cw Raman laser. Applied Physics Letters, 29, 181-183(1976).

    [36] R K Jain, C Lin, R H Stolen, et al. A high‐efficiency tunable cw Raman oscillator. Applied Physics Letters, 30, 162-164(1977).

    [37] D C Johnson, K O Hill, B S Kawasaki, et al. Tunable Raman fibre-optic laser. Electronics Letters, 13, 53-55(1977).

    [38] R K Jain, C Lin, R H Stolen, et al. A tunable multiple Stokes cw fiber Raman oscillator. Applied Physics Letters, 31, 89-90(1977).

    [39] E M Dianov, S K Isaev, L S Kornienko, et al. Raman laser with optical-fiber resonator. Soviet Journal of Quantum Electronics, 8, 744-746(1978).

    [40] D C Johnson, K O Hill, B S Kawasaki. Continuous-wave optical-fiber Raman oscillator employing a two-mirror resonator configuration. Applied Optics, 17, 3032-3034(1978).

    [41] C Lin, L G Cohen, R H Stolen, et al. Near-infrared sources in the 1–1.3 μm region by efficient stimulated Raman emission in glass fibers. Optics Communications, 20, 426-428(1977).

    [42] C Lin, W G French. A near‐infrared fiber Raman oscillator tunable from 1.07 to 1.32 μm. Applied Physics Letters, 34, 666-668(1979).

    [43] L Chinlon. Designing optical fibers for frequency conversion and optical amplification by stimulated Raman scattering and phase-matched four-photon mixing. Journal of Optical Communications, 4, 2-9(1983).

    [44] G A Koepf. Amplification by stimulated Raman scattering in low-loss optical fibers. Archiv der Elektronik und Ubertragung, 37, 145-152(1983).

    [45] Y Aoki, S Kishida, H Honmou, et al. Efficient backward and forward pumping CW Raman amplification for InGaAsP laser light in silica fibres. Electronics Letters, 19, 620-622(1983).

    [46] Y Ohmori, Y Sasaki, T Edahiro. Stimulated Raman scattering in optical fibers. Trans IECE Jpn, E-66, 146(1983).

    [47] Y Aoki. Properties of fiber Raman amplifiers and their applicability to digital optical communication systems. Journal of Lightwave Technology, 6, 1225-1239(1988).

    [48] P N Kean, B D Sinclair, K Smith, et al. Experimental evaluation of a fibre Raman oscillator having fibre grating reflectors. Journal of Modern Optics, 35, 397-406(1988).

    [49] Snitzer E, Po H, Hakimi F, et al. Doubleclad, offset ce Nd fiber laser[C]Proceedings of the Optical Fiber Senss, New leans, Louisiana, F, 1988: PD5.

    [50] Kafka D J. Laser diode pumped fiber lasers with pump cavity: United States, 4829529[P]. 19890509.

    [51] K Druehl, R G Wenzel, J L Carlsten. Observation of solitons in stimulated Raman scattering. Physical Review Letters, 51, 1171-1174(1983).

    [52] F M Mitschke, L F Mollenauer. Discovery of the soliton self-frequency shift. Optics Letters, 11, 659-661(1986).

    [53] M N Islam, L F Mollenauer, R H Stolen, et al. Amplifier/compressor fiber Raman lasers. Optics Letters, 12, 814-816(1987).

    [54] A S Gouveia-Neto, A S L Gomes, J R Taylor, et al. Cascade Raman soliton fiber ring laser. Optics Letters, 12, 927-929(1987).

    [55] A S Gouveia-Neto, A S L Gomes, J R Taylor. High-efficiency single-pass solitonlike compression of Raman radiation in an optical fiber around 1.4 μm. Optics Letters, 12, 1035-1037(1987).

    [56] H Po, J D Cao, B M Laliberte, et al. High power neodymium-doped single transverse mode fibre laser. Electronics Letters, 29, 1500-1501(1993).

    [57] M Muendel, B Engstrom, D Kea, et al. 35-watt cw single-mode ytterbium fiber laser at 1.1 µm. Optics & Photonics News, 8, 51-52(1997).

    [58] Grubb S G, Erdogan T, Mizrahi V, et al. 1.3 μm caded Raman amplifier in germanosilicate fibers[C]Proceedings of the Optical Amplifiers Their Applications, 1994: PD3.

    [59] E M Dianov, M V Grekov, I A Bufetov, et al. CW high power 1.24 µm and 1.48 µm Raman lasers based on low loss phosphosilicate fibre. Electronics Letters, 33, 1542-1544(1997).

    [60] Dianov E M, Fursa D G, Abramov A A, et al. Lowloss high germaniadoped fiber: Apromising gain medium f 1.3 μm Raman amplifier[C]Proceedings of the in Proc 20 th Eur Conf Opt Commun, 1994.

    [61] E M Dianov, A M Prokhorov. Medium-power CW Raman fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1022-1028(2000).

    [62] Islam M N. Raman Amplifiers f Telecommunications 2[M]. New Yk: Springer, 2004.

    [63] A S Siddiqui, G Vienne. The Effect of pump and signal laser fluctuations on the output signal from Raman and Brillouin optical fiber amplifiers. Journal of Optical Communi-cations, 13, 33-36(1992).

    [64] S R J E L Chinn. Analysis of counter-pumped small-signal fibre Raman amplifiers. Electronics Letters, 33, 607-608(1997).

    [65] H Kidorf, K Rottwitt, M Nissov, et al. Pump interactions in a 100-nm bandwidth Raman amplifier. IEEE Photonics Technology Letters, 11, 530-532(1999).

    [66] Emi Y, Namiki S. 100 nm bwidth flat gain Raman amplifiers pumped gainequalized by 12wavelengthchannel WDM high power laser diodes[C]Proceedings of the Optical Fiber Communication Conference the International Conference on Integrated Optics Optical Fiber Communication, 1999.

    [67] Y Emori, Y Akasaka, S J E L Namiki. Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes. Electronics Letters, 34, 2145(1998).

    [68] P B Hansen, G Jacobovitz-Veselka, L Grüner-Nielsen, et al. Raman amplification for loss compensation in dispersion compensating fibre modules. Electronics Letters, 34, 1136-1137(1998).

    [69] Lamon D, Stuyvaert J. Raman amplification[Z]. Pto, Ptugal: Universidade do Pto, 20072008.

    [70] A H Gnauck, G Charlet, P Tran, et al. 25.6-Tb/s WDM Transmission of Polarization-Multiplexed RZ-DQPSK Signals. Journal of Lightwave Technology, 26, 79-84(2008).

    [71] V E Perlin, H G Winful. Distributed feedback fiber Raman laser. IEEE Journal of Quantum Electronics, 37, 38-47(2001).

    [72] Y Hu, N G R Broderick. Improved design of a DFB Raman fibre laser. Optics Communications, 282, 3356-3359(2009).

    [73] S A Babin, D V Churkin, S I Kablukov, et al. All-fiber widely tunable Raman fiber laser with controlled output spectrum. Optics Express, 15, 8438-8443(2007).

    [74] E Bélanger, M Bernier, D Faucher, et al. High-power and widely tunable all-fiber Raman laser. Journal of Lightwave Technology, 26, 1696-1701(2008).

    [75] P A Thielen, L B Shaw, P C Pureza, et al. Small-core As-Se fiber for Raman amplification. Optics Letters, 28, 1406-1408(2003).

    [76] S D Jackson, G Anzueto-Sánchez. Chalcogenide glass Raman fiber laser. Applied Physics Letters, 88, 221106(2006).

    [77] Y Feng, L R Taylor, D B Calia. 150 W highly-efficient Raman fiber laser. Optics Express, 17, 23678-23683(2009).

    [78] Nilsson J, Sahu J K, Jang J N, et al. Claddingpumped Raman fiber amplifier[C]Optical Amplifiers Their Applications (OAA 2002), 2002: PD2.

    [79] C A Codemard, P Dupriez, Y Jeong, et al. High-power continuous-wave cladding-pumped Raman fiber laser. Optics Letters, 31, 2290-2292(2006).

    [80] S H Baek, W B Roh. Single-mode Raman fiber laser based on a multimode fiber. Optics Letters, 29, 153-155(2004).

    [81] N B Terry. An explanation of SRS beam cleanup in graded. Optics Express, 15, 17509-17519(2007).

    [82] Y Chen, T Yao, H Xiao, et al. 3 kW passive-gain-enabled metalized Raman fiber amplifier with brightness enhancement. Journal of Lightwave Technology, 39, 1785-1790(2020).

    [83] Q Xiao, P Yan, D Li, et al. Bidirectional pumped high power Raman fiber laser. Optics Express, 24, 6758-6768(2016).

    [84] J Li, J Du, L Ma, et al. Second-order few-mode Raman amplifier for mode-division multiplexed optical communication systems. Optics Express, 25, 810-820(2017).

    [85] Y Glick, Y Shamir, M Aviel, et al. 1.2 kW clad pumped Raman all-passive-fiber laser with brightness enhancement. Optics Letters, 43, 4755-4758(2018).

    [86] J W Nicholson, M F Yan, P Wisk, et al. Raman fiber laser with 81 W output power at 1480 nm. Optics Letters, 35, 3069-3071(2010).

    [87] Codemard C A, Ji J, Sahu J K, et al. 100W CW claddingpumped Raman fiber laser at 1120 nm[C]Proceedings of the SPIE, Fiber Lasers VII: Technology, Systems, Applications, 2010, 7580: 75801N.

    [88] S Kablukov, E Dontsova, E Zlobina, et al. An LD-pumped Raman fiber laser operating below 1 μm. Laser Physics Letters, 10, 085103(2013).

    [89] Z Hanwei, X Hu, Z Pu, et al. 119-W monolithic single-mode 1173-nm Raman fiber laser. IEEE Photonics Journal, 5, 1501706(2013).

    [90] J Liu, D Shen, H Huang, et al. High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings. Optics Express, 22, 6605-6612(2014).

    [91] T Yao, A Harish, J Sahu, et al. High-power continuous-wave directly-diode-pumped fiber Raman lasers. Applied Sciences, 5, 1323-1336(2015).

    [92] Y Glick, V Fromzel, J Zhang, et al. High power, high efficiency diode pumped Raman fiber laser. Laser Physics Letters, 13, 065101(2016).

    [93] E A Zlobina, S I Kablukov, A A Wolf, et al. Nearly single-mode Raman lasing at 954 nm in a graded-index fiber directly pumped by a multimode laser diode. Optics Letters, 42, 9-12(2017).

    [94] E A Zlobina, S I Kablukov, A A Wolf, et al. Generating high-quality beam in a multimode LD-pumped all-fiber Raman laser. Optics Express, 25, 12581-12587(2017).

    [95] Y Glick, V Fromzel, J Zhang, et al. High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement. Applied Optics, 56, B97-B102(2017).

    [96] Y Glick, Y Shamir, A A Wolf, et al. Highly efficient all-fiber continuous-wave Raman graded-index fiber laser pumped by a fiber laser. Optics Letters, 43, 1027-1030(2018).

    [97] E A Evmenova, S I Kablukov, I N Nemov, et al. High-efficiency LD-pumped all-fiber Raman laser based on a 100 µm core graded-index fiber. Laser Physics Letters, 15, 095101(2018).

    [98] Y Shamir, Y Glick, M Aviel, et al. 250 W clad pumped Raman all-fiber laser with brightness enhancement. Optics Letters, 43, 711-714(2018).

    [99] A G Kuznetsov, S I Kablukov, E V Podivilov, et al. Brightness enhancement and beam profiles in an LD-pumped graded-index fiber Raman laser. OSA Continuum, 4, 1034-1040(2021).

    [100] A G Kuznetsov, I N Nemov, A A Wolf, et al. Multimode LD-pumped all-fiber Raman laser with excellent quality of 2(nd)-order Stokes output beam at 1019 nm. Opt Express, 29, 17573-17580(2021).

    [101] C Fan, Y Chen, T Yao, et al. Over 400 W graded-index fiber Raman laser with brightness enhancement. Optics Express, 29, 19441-19449(2021).

    [102] L Zhang, C Liu, H Jiang, et al. Kilowatt ytterbium-Raman fiber laser. Optics Express, 22, 18483-18489(2014).

    [103] M Rekas, O Schmidt, H Zimer, et al. Over 200 W average power tunable Raman amplifier based on fused silica step index fiber. Applied Physics B, 107, 711-716(2012).

    [104] V R Supradeepa, J W Nicholson. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers. Optics Letters, 38, 2538-2541(2013).

    [105] L Zhang, H Jiang, S Cui, et al. Integrated ytterbium-Raman fiber amplifier. Optics Letters, 39, 1933-1936(2014).

    [106] J Liu, F Tan, H Shi, et al. High-power operation of silica-based Raman fiber amplifier at 2147 nm. Optics Express, 22, 28383-28389(2014).

    [107] H Zhang, H Xiao, P Zhou, et al. High power Yb-Raman combined nonlinear fiber amplifier. Optics Express, 22, 10248-10255(2014).

    [108] H Zhang, R Tao, P Zhou, et al. 1.5-kW Yb-Raman combined nonlinear fiber amplifier at 1120 nm. IEEE Photonics Technology Letters, 27, 628-630(2015).

    [109] Y Chen, J Leng, H Xiao, et al. High-efficiency all-fiber Raman fiber amplifier with record output power. Laser Physics Letters, 15, 085104-085109(2018).

    [110] Y Chen, J Leng, H Xiao, et al. Pure passive fiber enabled highly efficient Raman fiber amplifier with record kilowatt power. IEEE Access, 7, 28334-28339(2019).

    [111] Z Wang, Q Xiao, Y Huang, et al. Dual-wavelength bidirec-tional pumped high-power Raman fiber laser. High Power Laser Science and Engineering, 7, e5(2019).

    [112] Y Chen, T Yao, H Xiao, et al. High-power cladding pumped Raman fiber amplifier with a record beam quality. Optics Letters, 45, 2367-2370(2020).

    [113] Y Chen, T Yao, L Huang, et al. 2 kW high-efficiency Raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation. Optics Express, 28, 3495-3504(2020).

    [114] Y Chen, T Yao, H Xiao, et al. Greater than 2 kW all-passive fiber Raman amplifier with good beam quality. High Power Laser Science and Engineering, 8, e33(2020).

    [115] C Fan, H Xiao, T Yao, et al. Kilowatt level Raman amplifier based on 100 microm core diameter multimode GRIN fiber with M(2) = 1.6. Opt Lett, 46, 3432-3435(2021).

    [116] L Zhang, J Dong, Y Feng. High-power and high-order random Raman fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-6(2018).

    [117] Balaswamy V, Harshitha S, Ramachran S, et al. High power, ultrahigh spectral purity, broadly wavelength tunable caded Raman fiber laser[C]Proceedings of the SPIE, Fiber Lasers XVI: Technology Systems, 2019, 10897: 108970N.

    [118] V Balaswamy, S Aparanji, S Arun, et al. High-power, widely wavelength tunable, grating-free Raman fiber laser based on filtered feedback. Optics Letters, 44, 279-282(2019).

    [119] Y Feng, S Huang, A Shirakawa, et al. 589 nm Light Source Based on Raman Fiber Laser. Japanese Journal of Applied Physics, 43, L722-L724(2004).

    [120] A G Kuznetsov, E A Evmenova, E I Dontsova, et al. Frequency doubling of multimode diode-pumped GRIN-fiber Raman lasers. Optics Express, 27, 34760-34768(2019).

    [121] T H Runcorn, T Legg, R T Murray, et al. Fiber-integrated frequency-doubling of a picosecond Raman laser to 560 nm. Optics Express, 23, 15728-15733(2015).

    [122] A M Chandran, T H Runcorn, R T Murray, et al. Nanosecond pulsed 620  nm source by frequency-doubling a phosphosilicate Raman fiber amplifier. Optics Letters, 44, 6025-6028(2019).

    [123] S I Kablukov, S A Babin, D V Churkin, et al. Frequency doubling of a Raman fiber laser. Laser Physics, 20, 365-371(2010).

    [124] S Cui, J Qian, X Zeng, et al. A watt-level yellow random laser via single-pass frequency doubling of a random Raman fiber laser. Optical Fiber Technology, 64, 102552(2021).

    [125] S Cui, X Zeng, X Cheng, et al. Generation of 10 W yellow fiber laser by frequency doubling of cascaded Raman laser. Chinese Journal of Lasers, 48, 1601006(2021).

    [126] Supradeepa V R, Nicholson J W, Feder K. Continuous wave erbiumdoped fiber laser with output power of 100 W at 1550 nm inb cepumped by a 1480 nm Raman fiber laser[C]2012 Conference on Lasers ElectroOptics (CLEO) , 2012: 12

    [127] X Wang, P Zhou, H Zhang, et al. 100 W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers. Optics Letters, 39, 4329-4332(2014).

    [128] S D Jackson. Mid infrared holmium fiber lasers. IEEE Journal of Quantum Electronics, 42, 187-191(2006).

    [129] X Wang, P Zhou, Y Miao, et al. Raman fiber laser-pumped high-power, efficient Ho-doped fiber laser. Journal of the Optical Society of America B, 31, 2476-2479(2014).

    [130] H Zhang, P Zhou, X Wang, et al. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation. Optics Express, 23, 17138-17144(2015).

    [131] S K Turitsyn, S A Babin, A E El-Taher, et al. Random distributed feedback fibre laser. Nature Photonics, 4, 231-235(2010).

    [132] S Sugavanam, M Sorokina, D V Churkin. Spectral correlations in a random distributed feedback fibre laser. Nature Communications, 8, 15514(2017).

    [133] A M R Pinto, M Lopez-Amo, J Kobelke, et al. Temperature fiber laser sensor based on a hybrid cavity and a random mirror. Journal of Lightwave Technology, 30, 1168-1172(2012).

    [134] Z Wang, W Sun, H Wu, et al. Long-distance random fiber laser point sensing system incorporating active fiber. Optics Express, 24, 22448-22453(2016).

    [135] S Miao, W Zhang, Y Song, et al. High-resolution random fiber laser acoustic emission sensor. Optics Express, 28, 12699-12708(2020).

    [136] M Tan, P Rosa, S T Le, et al. Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping. Optics Express, 24, 2215-2221(2016).

    [137] F Monet, J S Boisvert, R Kashyap. A simple high-speed random number generator with minimal post-processing using a random Raman fiber laser. Scientific Reports, 11, 13182(2021).

    [138] Xu J. The investigation of high power rom fiber laser the respected timefrequency acteristics[D]. Changsha: National University of Defense Technology, 2018. (in Chinese)

    [139] E A Evmenova, A G Kuznetsov, I N Nemov, et al. 2nd-order random lasing in a multimode diode-pumped graded-index fiber. Scientific Reports, 8, 17495(2018).

    [140] H Zhang, J Ye, P Zhou, et al. Tapered-fiber-enabled high-power, high-spectral-purity random fiber lasing. Optics Letters, 43, 4152-4155(2018).

    [141] H Zhang, L Huang, J Song, et al. Quasi-kilowatt random fiber laser. Optics Letters, 44, 2613-2616(2019).

    [142] J Song, S Ren, W Liu, et al. Temporally stable fiber amplifier pumped random distributed feedback Raman fiber laser with record output power. Optics Letters, 46, 5031-5034(2021).

    [143] Y Chen, C Fan, T Yao, et al. Brightness enhancement in random Raman fiber laser based on a graded-index fiber with high-power multimode pumping. Optics Letters, 46, 1185-1188(2021).

    [144] M Bernier, D Faucher, R Vallée, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm. Optics Letters, 32, 454-456(2007).

    [145] V Fortin, M Bernier, J Carrier, et al. Fluoride glass Raman fiber laser at 2185 nm. Optics Letters, 36, 4152-4154(2011).

    [146] V Fortin, M Bernier, D Faucher, et al. 3.7 W fluoride glass Raman fiber laser operating at 2231 nm. Opt Express, 20, 19412-19419(2012).

    [147] M Bernier, V Fortin, N Caron, et al. Mid-infrared chalcogenide glass Raman fiber laser. Optics Letters, 38, 127-129(2013).

    [148] M Bernier, V Fortin, M El-Amraoui, et al. 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber. Optics Letters, 39, 2052-2055(2014).

    [149] J Liu, J Wu, H Chen, et al. Short-pulsed Raman fiber laser and its dynamics. Science China Physics, Mechanics & Astronomy, 64, 214201(2020).

    [150] M Bravo, M Fernandez-Vallejo, M Lopez-Amo. Internal modulation of a random fiber laser. Optics Letters, 38, 1542-1544(2013).

    [151] W Yao, B Chen, J Zhang, et al. High-average-power operation of a pulsed Raman fiber amplifier at 1686 nm. Optics Express, 23, 11007-11012(2015).

    [152] X Yang, L Zhang, H Jiang, et al. Actively mode-locked Raman fiber laser. Optics Express, 23, 19831-19836(2015).

    [153] A G Kuznetsov, D S Kharenko, E V Podivilov, et al. Fifty-ps Raman fiber laser with hybrid active-passive mode locking. Optics Express, 24, 16280-16285(2016).

    [154] W Pan, J Zhou, L Zhang, et al. Rectangular pulse generation from a mode locked Raman fiber laser. Journal of Lightwave Technology, 37, 1333-1337(2019).

    [155] A Chamorovskiy, J Rautiainen, J Lyytikäinen, et al. Raman fiber laser pumped by a semiconductor disk laser and mode locked by a semiconductor saturable absorber mirror. Optics Letters, 35, 3529-3531(2010).

    [156] J Schröder, D Alasia, T Sylvestre, et al. Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser. Journal of the Optical Society of America B, 25, 1178-1186(2008).

    [157] Z Luo, M Zhong, F Xiong, et al. Intermode beating mode-locking technique for O-band mixed-cascaded Raman fiber lasers. Optics Letters, 40, 502-505(2015).

    [158] N Tarasov, A M Perego, D V Churkin, et al. Mode-locking via dissipative Faraday instability. Nature Communications, 7, 12441(2016).

    [159] Matos C J S de, S V Popov, J R Taylor. Short-pulse, all-fiber, Raman laser with dispersion compensation in a holey fiber. Optics Letters, 28, 1891-1893(2003).

    [160] D Lin, S-U Alam, P S Teh, et al. Tunable synchronously-pumped fiber Raman laser in the visible and near-infrared exploiting MOPA-generated rectangular pump pulses. Optics Letters, 36, 2050-2052(2011).

    [161] D S Kharenko, V D Efremov, E A Evmenova, et al. Generation of Raman dissipative solitons near 1.3 microns in a phosphosilicate-fiber cavity. Optics Express, 26, 15084-15089(2018).

    [162] H Chen, S-P Chen, Z-F Jiang, et al. All-fiberized synchro-nously pumped 1120 nm picosecond Raman laser with flexible output dynamics. Optics Express, 23, 24088-24096(2015).

    [163] D Churin, J Olson, R A Norwood, et al. High-power synchronously pumped femtosecond Raman fiber laser. Optics Letters, 40, 2529-2532(2015).

    [164] S Kobtsev, S Kukarin, A Kokhanovskiy. Synchronously pumped picosecond all-fibre Raman laser based on phosphorus-doped silica fibre. Optics Express, 23, 18548-18553(2015).

    [165] Y Huang, K Wang, Z Luo. Ultrafast Raman fiber laser based on cavity matching scheme and heavily germania-core fiber. Journal of Lightwave Technology, 37, 2914-2919(2019).

    [166] W Pan, H Jiang, X Yang, et al. Ultrafast Raman fiber Laser with Random Distributed Feedback. Laser & Photonics Reviews, 12, 1700326(2018).

    [167] O Schmidt, C Wirth, I Tsybin, et al. Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources. Optics Letters, 34, 1567-1569(2009).

    [168] Yao T, Nilsson J. Shtwavelength fiber Raman laser pulsepumped by multimode laser diode at 806 nm[C]Speciality Optical Fibres (SOF) Topical Meeting, 2012.

    [169] V Filippov, Y Chamorovskii, J Kerttula, et al. Double clad tapered fiber for high power applications. Optics Express, 16, 1929-1944(2008).

    [170] D Jain, Y Jung, M Nunez-Velazquez, et al. Extending single mode performance of all-solid large-mode-area single trench fiber. Optics Express, 22, 31078-31091(2014).

    [171] V Distler, F Möller, M Strecker, et al. Transverse mode instability in a passive fiber induced by Stimulated Raman Scattering. Optics Letters, 28, 22819-22828(2020).

    [172] H Zhang, H Xiao, X Wang, et al. Mode dynamics in high-power Yb-Raman fiber amplifier. Optics Letters, 45, 3394-3397(2020).

    [173] S Naderi, I Dajani, J Grosek, et al. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers. Optics Express, 24, 16550-16565(2016).

    [174] W Liu, P Ma, P Zhou, et al. Effects of four-wave-mixing in high-power Raman fiber amplifiers. Optics Express, 28, 593-606(2020).

    CLP Journals

    [1] Yang Li, Chenchen Fan, Xiulu Hao, Xiaoya Ma, Tianfu Yao, Jiangming Xu, Xianglong Zeng, Pu Zhou. High-power vortex Raman fiber laser[J]. Infrared and Laser Engineering, 2023, 52(6): 20230292

    [2] Jiangming Xu, Yang Zhang, Xiaoya Ma, Jun Ye, Yanzhao Ke, Sicheng Li, Junrui Liang, Junhong He, Liangjin Huang, Zhiyong Pan, Tianfu Yao, Jinyong Leng, Pu Zhou. Research progress of low-quantum-defect fiber laser at 1 μm band (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230267

    [3] Yadong Jiao, Zhixu Jia, Xiaohui Guo, Chengyun Zhang, Weiping Qin, Guanshi Qin. Progress on mid-infrared glass optical fiber materials and Raman laser source (invited)[J]. Infrared and Laser Engineering, 2023, 52(5): 20230228

    Pu Zhou, Tianfu Yao, Chenchen Fan, Yang Li, Xiulu Hao, Yizhu Chen, Xiaoya Ma, Jiangming Xu, Hu Xiao, Jinyong Leng, Wei Liu. 50th anniversary of Raman fiber laser: History, progress and prospect (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20220015
    Download Citation