• Acta Photonica Sinica
  • Vol. 46, Issue 1, 101001 (2017)
ZHANG Guang-yu*, LIU Lin-jing, and ZHANG Cheng-long
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20174601.0101001 Cite this Article
    ZHANG Guang-yu, LIU Lin-jing, ZHANG Cheng-long. Study on Single-photon Acquisition Probability Based on Laguerre-Gaussian Beams[J]. Acta Photonica Sinica, 2017, 46(1): 101001 Copy Citation Text show less
    References

    [1] RESCH K J, LINDENTHAL M, BLAUENSTEINER B, et al. Distributing entanglement and single photons through an intra-city, free-space quantum channel[J]. Optics Express, 2005, 13(1): 202-209.

    [2] MARCIKIC I, LAMAS-LINARES A, KURTSIEFER C. Free-space quantum key distribution with entangled photons[J]. Applied Physics Letters, 2006, 89(10): 101122.

    [3] ZHANG Guang-yu, SONG Si-yu, LI Jun-lin, et al. Free-space quantum-key distribution with polarization compensation[J]. Journal of Russian Laser Research, 2011, 32(6): 579-583.

    [4] HUGHES R J, NORDHOLT J E, DERKACS D, et al. Practical free-space quantum key distribution over 10 km in daylight and at night[J]. New Journal of Physics, 2002, 4(1): 43.1-43.14.

    [5] KURTSIEFER C, ZARDA P, HALDER M, et al. A step towards global key distribution[J]. Nature, 2002, 419(6906): 450.

    [6] SCHMITT-MANDERBACH T, WEIER H, FURST M, et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km[J]. Physical Review Letters, 2007, 98(1): 010504.

    [7] ASPELMEYER M, BOHM H R, GYATSO T, et al. Long-distance free-space distribution of quantum entanglement[J]. Science, 2003, 301(5633): 621-623.

    [8] PENG Cheng-zhi, YANG Tao, BAO Xiao-hui, et al. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication[J]. Physical Review Letters, 2005, 94(15): 150501.

    [9] URSIN R, TIEFENBACHER F, SCHMITT-MANDERBACH T, et al. Entanglement-based quantum communication over 144 km[J]. Nature Physics, 2007, 3: 481-486.

    [10] NORDHOLT J E, HUGHES R J, MORGAN G L, et al. Present and future free-space quantum key distribution[C]. SPIE, 2002, 4635: 116-126.

    [11] RARITY J G, TAPSTER P R, GORMAN P M, et al. Ground to satellite secure key exchange using quantum cryptography[J]. New Journal of Physics, 2002, 4(1): 82.1-82.21.

    [12] ZHANG Guang-yu, YANG Zhe, ZHANG Cheng-long, et al. Dynamic polarization-basis compensation for free-space quantum communications[J]. China Communications, 2013, 10(2): 27-32.

    [13] MIAO Er-long, HAN Zheng-fu, GONG Shun-sheng, et al. Background noise of satellite-to-ground quantum key distribution[J]. New Journal of Physics, 2005, 7: 215.

    [14] BONATO C, ASPELMEYER M, JENNEWEIN T, et al. Influence of satellite motion on polarization qubits in a space-earth quantum communication link[J]. Optics Express, 2006, 14(21): 10050-10059.

    [15] VILLORESI P, JENNEWEIN T, TAMBURINI F, et al. Experimental verification of the feasibility of a quantum channel between space and earth[J]. New Journal of Physics, 2008, 10: 033038.

    [16] DU Wen-he, YAO Zhong-min, LIU Dao-sen, et al. Influence of non-kolmogorov turbulence on intensity fluctuations in laser satellite communication[J]. Journal of Russian Laser Research, 2012, 33(1): 90-97.

    [17] DU Wen-he, ZHU Heng-jun, LIU Dao-sen, et al. Effect of non-kolmogorov turbulence on beam spreading in satellite laser communication[J]. Journal of Russian Laser Research, 2012, 33(5): 401-408.

    [18] ERDMANN R. Proposed methods of addressing some rate and range limits in quantum cryptography[C]. SPIE, 2002, 4821: 486-493.

    [19] ZHANG Guang-yu, MA Jing, TAN Li-ying, et al. Single-photon acquisition probability for free-space quantum key distribution[C]. SPIE, 2005, 5631: 173-180.

    [20] ZHANG Guang-yu, MA Jing, TAN Li-ying. Theoretical study of single-photon acquisition based on Hermite-Gaussian beams[J]. Acta Photonica Sinica, 2005, 34(8): 1201-1204.

    [21] ZHANG Guang-yu, MA Jing, TAN Li-ying. Theoretical analysis of single-photon acquisition in satellite-to-ground quantum key distribution[J]. Opto-Electronic Engineering, 2006, 33(3): 91-94.

    [22] BI Hui-ning, MA Jing. Study of single-photon acquisition probability based on Hermite-Gaussian beams[J]. Chinese Journal of Lasers, 2010, 37(2): 428-432.

    [23] ZHANG Yi-xin, XU Jian-cai, WANG Jian-yu, et al. Detection probability model of single photons propagation in a slant path turbulent atmosphere[C]. Chengdu: Proceedings of IEEE International Symposium on Photonics and Optoelectronics, 2010: 1-4.

    [24] BANAKH V A. Spatiotemporal coherence of nonmonochromatic laser radiation in a turbulent atmosphere[J]. Quantum Electronics, 2006, 36(3): 253-256.

    [25] ZHANG Yi-xin, WANG Gao-gang. Slant path average intensity of finite optical beam propagating in turbulent atmosphere[J]. Chinese Optics Letters, 2006, 4(10): 559-562.

    CLP Journals

    [1] Wang Chen, Liu Tong, Shao Qiongling, Ren Yuan, Miao Jisong. Quadrupling topological charges of vortex using multi-passed spiral phase plate[J]. Infrared and Laser Engineering, 2018, 47(9): 918008

    ZHANG Guang-yu, LIU Lin-jing, ZHANG Cheng-long. Study on Single-photon Acquisition Probability Based on Laguerre-Gaussian Beams[J]. Acta Photonica Sinica, 2017, 46(1): 101001
    Download Citation