• Acta Optica Sinica
  • Vol. 32, Issue 9, 906005 (2012)
Cao Wenhua1、*, Wang Yong1, and Liu Songhao2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201232.0906005 Cite this Article Set citation alerts
    Cao Wenhua, Wang Yong, Liu Songhao. Dispersion and Nonlinearity Compensation in Optical Fiber Communication Systems by Optical Phase Conjugation Incorporated Pulse Prechirp[J]. Acta Optica Sinica, 2012, 32(9): 906005 Copy Citation Text show less
    References

    [1] R. I. Killey, H. J. Thiele, V. Mikhailov et al.. Reduction of intrachannel nonlinear distortion in 40 Gb/s-based WDM transmission over standard fiber [J]. IEEE Photon. Technol. Lett., 2000, 12(12): 1624~1626

    [2] S. Kumar, J. C. Mauro, S. Raghavan et al.. Intrachannel nonlinear penalties in dispersion-managed transmission systems [J]. IEEE J. Sel. Top. Quant. Electron., 2002, 8(3): 626~631

    [3] S. Shen, A. M. Weiner. Complete dispersion compensation for 400-fs pulse transmission over 10-km fiber link using dispersion compensating fiber and spectral phase equalizer [J]. IEEE Photon. Technol. Lett., 1999, 11(7): 827~829

    [4] X. J. Liu, Y. J. Qiao, Y. F. Ji. Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40 Gb/s CO-OFDM systems [J]. Opt. Commun., 2010, 283(13): 2749~2753

    [5] Y. J. Qiao, X. J. Liu, Y. F. Ji. Fiber nonlinearity post-compensation by optical phase conjugation for 40 Gb/s CO-OFDM systems [J]. Chin. Phys. Lett., 2011, 28(6): 064214

    [6] L. J. Li, Y. J. Qiao, Y. F. Ji. Optimized optical phase conjugation configuration for fiber nonlinearity compensation in CO-OFDM systems [J]. Chin. Opt. Lett., 2011, 9(6): 060604

    [7] B. P. P. Kuo, E. Myslivets, A. O. J. Wiberg et al.. Transmission of 640-Gb/s RZ-OOK channel over 100-km SSMF by wavelength-transparent conjugation [J]. J. Lightwave Technol., 2011, 29(4): 516~523

    [8] V. Pechenkin, I. J. Fair. Analysis of four-wave mixing suppression in fiber-optic OFDM transmission systems with an optical phase conjugation module [J]. J. Opt. Commun. Netw., 2010, 2(9): 701~710

    [9] V. Pechenkin, I. J. Fair. On four-wave mixing suppression in dispersion-managed fiber-optic OFDM systems with an optical phase conjugation module [J]. J. Lightwave Technol., 2011, 29(11): 1677~1690

    [10] A. Yariv, D. Fekete, D. M. Pepper. Compensation for channel dispersion by nonlinear optical phase conjugation [J]. Opt. Lett., 1979, 4(2): 52~54

    [11] M. Tsang, D. Psaltis. Dispersion and nonlinearity compensation by spectral phase conjugation [J]. Opt. Lett., 2003, 28(17): 1558~1560

    [12] Bu Yang, Wang Xiangzhao. Suppression of pulse impairments due to cross-phase modulation by frequency domain phase conjugation [J]. Acta Physica Sinica, 2005, 54(10): 4747~4753

    [13] A. M. Weiner, D. E. Leaird, D. H. Reitze et al.. Spectral holography of shaped femtosecond pulses [J]. Opt. Lett., 1992, 17(3): 224~226

    [14] M. Tsang. Spectral phase conjugation via extended phase matching [J]. J. Opt. Soc. Am. B, 2006, 23(5): 861~867

    [15] D. M. Marom, D. Panasenko, R. Rokitski et al.. Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves [J]. Opt. Lett., 2000, 25(2): 132~134

    [16] T. T. Ng, F. Parmigiani, M. Ibsen et al.. Compensation of linear distortions by using XPM with parabolic pulses as a time lens [J]. IEEE Photon. Technol. Lett., 2008, 20(13): 1097~1099

    [17] H. Nishioka, H. Tomita, K. Hayasaka et al.. All-optical temporal phase conjugation scheme for few-cycle optical pulses using diffractive optics [J]. Opt. Express, 2006, 14(16): 7447~7455

    [18] V. L. da Silva, Y. Silberberg, J. P. Heritage et al.. Femtosecond accumulated photon echo in Er-doped fibers [J]. Opt. Lett., 1991, 16(17): 1340~1342

    [19] O. Kuzucu, Y. Okawachi, R. Salem et al.. Spectral phase conjugation via temporal imaging [J]. Opt. Express, 2009, 17(22): 20605~20614

    [20] K. Kikuchi, C. Lorattansane. Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using midway optical phase conjugator [J]. IEEE Photon. Technol. Lett., 1994, 6(1): 104~105

    [21] W. Pieper, C. Kurtzke, R. Schnabel et al.. Nonlinearity-insensitive standard-fiber transmission based on optical-phase conjugation in a semiconductor-laser amplifier [J]. Ellectron. Lett., 1994, 30(19): 724~726

    [22] S. Watanabe. Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation [J]. J. Lightwave Technol., 1996, 14(3): 243~248

    [23] P. Kaewplung, K. Kikuchi. Simultaneous cancellation of fiber loss, dispersion, and Kerr effect in ultralong-haul optical fiber transmission by midway optical phase conjugation incorporated with distributed Raman amplification [J]. J. Lightwave Technol., 2007, 25(10): 3035~3050

    [24] Qu Linjie, Qu Xin. Long-distance optical soliton transmission with large pulse-duty-ratio and large amplifier spacing using phase conjugation and dispersion allocation [J]. Acta Optica Sinica, 1997, 17(5): 565~571

    [25] J. Li, K. Xu, G. Zhou et al.. Performance evaluation for 160-Gb/s optical phase conjugation systems considering dispersion mapping and third-order dispersion [J]. Chin. Opt. Lett., 2007, 5(2): 63~65

    [26] J. Li, K. Xu, G. Zhou et al.. Dispersion-compensation schemes for 160-Gb/s 1200-km transmission by optical phase conjugation [J]. J. Lightwave Technol., 2007, 25(8): 1986~1995

    [27] P. Minzioni, F. Alberti, A. Schiffini. Optimized link design for nonlinearity cancellation by optical phase conjugation [J]. IEEE Photon. Technol. Lett., 2004, 16(3): 813~815

    [28] P. Minzioni, I. Cristiani, V. Degiorgio et al.. Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation [J]. IEEE Photon. Technol. Lett., 2006, 18(9): 995~997

    [29] G. P. Agrawal. Applications of Nonlinear Fiber Optics (2th edition)[M]. Jia Dongfang, Yu Zhenhong Transl.. Beijing: Publishing House of Electronics Industry, 2008

    [30] W. H. Cao, P. K. A. Wai. Picosecond soliton transmission by use of concatenated gain-distributed nonlinear amplifying fiber loop mirrors [J]. Appl. Opt., 2005, 44(35): 7611~7620

    [31] N. G. R. Broderick, D. J. Richardson, D. Taverner et al.. High-power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings [J]. Opt. Lett., 1999, 24(8): 566~568

    [32] Chen Weicheng, Xu Wencheng, Luo Aiping. The effect of residual third-order dispersion on phase conjugation polarization solitons and its compensation [J]. Acta Photonica Sinica, 2007, 36(6): 1601~1604

    CLP Journals

    [1] Wang Yong, Zhang Dengguo, Ouyang Zhengbiao, Li Jingzhen. Four-Port Cross-Shaped Circulator Based on Two-Dimensional Magneto-Photonic Crystals[J]. Acta Optica Sinica, 2014, 34(10): 1023001

    [2] Tan Zhongwei, Qin Fengjie, Ren Wenhua, Liu Yan. Application of Fiber Dispersion in All Optical Data Processing[J]. Laser & Optoelectronics Progress, 2013, 50(8): 80023

    [3] Yu Zhenhong, Xie Fengfeng. Study of the Effects of Third-Order Dispersion in Ultra-High Speed Optical Fiber Communication System[J]. Laser & Optoelectronics Progress, 2014, 51(5): 50604

    [4] Cao Wenhua, Cai Weiwei, Liu Chaoliang. Intra-Channel Nonlinear Effects and Their Suppression in Quasi-Linear Strongly Dispersion-Managed Transmission[J]. Laser & Optoelectronics Progress, 2014, 51(1): 11901

    [5] Li Chunlei, Zhang Xiaoguang, Xi Lixia, Weng Xuan, Zhao Donghe. Experimental Validation of Effective Nonlinearity Compensation by FIR-BP Algorithm in Polarization Multiplexing System[J]. Chinese Journal of Lasers, 2013, 40(12): 1205001

    Cao Wenhua, Wang Yong, Liu Songhao. Dispersion and Nonlinearity Compensation in Optical Fiber Communication Systems by Optical Phase Conjugation Incorporated Pulse Prechirp[J]. Acta Optica Sinica, 2012, 32(9): 906005
    Download Citation