• Chinese Journal of Quantum Electronics
  • Vol. 34, Issue 5, 628 (2017)
Chao SONG1,*, Weiwei DONG1,2, Shimao WANG1, Jingzhen SHAO1, and Xiaodong FANG1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2017.05.018 Cite this Article
    SONG Chao, DONG Weiwei, WANG Shimao, SHAO Jingzhen, FANG Xiaodong. Synthesis of two morphologies FeS2 and its application for dye-sensitized solar cells[J]. Chinese Journal of Quantum Electronics, 2017, 34(5): 628 Copy Citation Text show less
    References

    [1] O’Regan B, Gr tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740.

    [2] Boschloo G, Hagfeldt A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells[J]. Acc. Chem. Res., 2009, 42(11): 1819-1826.

    [3] Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. J. Am. Chem. Soc., 2008, 130(18): 5856-5857.

    [4] Roy-Mayhew J D, Bozym D J, Punckt C, et al. Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells[J]. ACS Nano, 2010, 4(10): 6203-6211.

    [5] Brennan L J, Byrne M T, Bari M, et al. Carbon nanomaterials for dye-sensitized solar cell applications: A bright future[J]. Adv. Energy Mater., 2011, 1(4): 472-485.

    [6] Das S, Sudhagar P, Verma V, et al. Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells[J]. Adv. Funct. Mater., 2011, 21(19): 3729-3736.

    [7] Xia J, Chen L, Yanagida S. Application of polypyrrole as a counter electrode for a dye-sensitized solar cell[J]. J. Mater. Chem., 2011, 21(12): 4644-4649.

    [8] Xue Y, Liu J, Chen H, et al. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells[J]. Angew. Chem., 2012, 51(48): 12124-12127.

    [10] Takahashi N, Sawada T, Nakamura T. Preparation of pyrite thin films by atmospheric pressure chemical vapor deposition using FeCl3 and CH3CSNH2[J]. J. Mater. Chem., 2000, 10(10): 2346-2348.

    [11] Kirkeminde A, Scott R, Ren S Q. All inorganic iron pyrite nano-heterojunction solar cells[J]. Nanoscale, 2012, 4(24): 7649-7654.

    [12] Huang Q H, Ling T, Qiao S Z, et al. Pyrite nanorod arrays as an efficient counter electrode for dye-sensitized solar cells[J]. J. Mater. Chem. A, 2013, 1(38): 11828-11833.

    [13] Wei Z, Qiu Y C, Chen H N, et al. Magnetic-field-assisted aerosol pyrolysis synthesis of iron pyrite sponge-like nanochain networks as cost-efficient counter electrodes in dye-sensitized solar cells[J]. J. Mater. Chem. A, 2014, 2(15): 5508-5515.

    [14] Xu J, Xue H, Yang X, et al. Synthesis of honeycomb-like mesoporous pyrite FeS2 microspheres as efficient counter electrode in quantum dots sensitized solar cells[J]. Small, 2014, 10 (22): 4754-4759.

    [15] Shukla S, Loc N H, Boix P, et al. Iron pyrite thin film counter electrodes for dye-sensitized solar cells: High efficiency for iodine and cobalt redox electrolyte cells[J]. ACS Nano, 2014, 8(10): 10597-10605.

    [16] Wang Y C, Wang D Y, Jiang Y T, et al. FeS2 nanocrystal ink as a catalytic electrode for dye-sensitized solar cells[J]. Angew. Chem. Int. Ed., 2013, 52(26): 6694-6698.

    [17] Samad L, Caban-Acevedo M, Shearer M J, et al. Direct chemical vapor deposition synthesis of phase-pure iron pyrite (FeS2) thin films[J]. Chem. Mater., 2015, 27(8): 3108-3114.

    [18] Wang S, Dong W, Fang X, et al. Enhanced electrocatalytic activity of vacuum thermal evaporated CuxS counter electrode for quantum dot-sensitized solar cells[J]. Electrochim Acta, 2015, 154(2015): 47-53.

    [19] Wang S M, Dong W W, Tao R H, et al. Optimization of single-crystal rutile TiO2 nanorod arrays based dye-sensitized solar cells and their electron transport properties[J]. J. Power Sources, 2013, 235(2013): 193-201.

    [20] Dao V, Kim S, Choi H, et al. Efficiency enhancement of dye-sensitized solar cell using Pt hollow sphere counter electrode[J]. J. Phys. Chem., 2011, 115(51): 25529-25534.

    [21] Popov A I, Geske D H. Studies on the chemistry of halogen and of polyhalides. XIII. Voltammetry of iodine species in acetonitrile[J]. J. Am. Chem. Soc., 1958, 80(6): 1340-1352.

    [22] Kavan L, Yum J H, Nazeeruddin M K, et al. Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells[J]. ACS Nano, 2011, 5(11): 9171-9178.

    [23] Wang L, Wu M, Gao Y, et al. Highly catalytic counter electrodes for organic redox couple of thiolate/disulfide in dye-sensitized solar cells[J]. Appl. Phys. Lett., 2011, 98(22): 221102.

    [24] He B, Meng X, Tang Q. Low-cost counter electrodes from CoPt alloys for efficient dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces, 2014, (7): 4812-4818.

    [25] Wang M, Anghel A M, Marsan B, et al. CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2009, 131(44): 15976-15977.

    [26] Wu M X, Lin X, Wang T H, et al. Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes[J]. Energy Environ. Sci., 2011, 4(6): 2308-2315.

    [27] Wu M, Lin X, Hagfeldt A, et al. Low-cost molybdenum carbide and Tungsten carbide counter electrodes for dye-sensitized solar cells[J]. Angew. Chem. Int. Ed. 2011, 50(15): 3520-3524.

    SONG Chao, DONG Weiwei, WANG Shimao, SHAO Jingzhen, FANG Xiaodong. Synthesis of two morphologies FeS2 and its application for dye-sensitized solar cells[J]. Chinese Journal of Quantum Electronics, 2017, 34(5): 628
    Download Citation