• Laser & Optoelectronics Progress
  • Vol. 62, Issue 2, 0215007 (2025)
Junjun Lu1,*, Ke Ding2, Zuoxi Zhao1, and Feng Wang2
Author Affiliations
  • 1College of Engineering, South China Agricultural University, Guangzhou 510640, Guangdong , China
  • 2Guangdong University of Technology, Guangzhou 510006, Guangdong , China
  • show less
    DOI: 10.3788/LOP241055 Cite this Article Set citation alerts
    Junjun Lu, Ke Ding, Zuoxi Zhao, Feng Wang. A Novel Three-Dimensional Point Cloud Matching Algorithm Based on Point Region Features and Weighted Voting[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0215007 Copy Citation Text show less
    References

    [1] Tejani A, Kouskouridas R, Doumanoglou A et al. Latent-class Hough forests for 6 DoF object pose estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 119-132(2018).

    [2] Li M Y, Hashimoto K. Accurate object pose estimation using depth only[J]. Sensors, 18, 1045(2018).

    [3] Zhou Q Y, Park J, Koltun V. Fast global registration[M]. Computer vision-ECCV 2016, 9906, 766-782(2016).

    [4] Wang Y, Liu Y P, Xie Q et al. Density-invariant registration of multiple scans for aircraft measurement[J]. IEEE Transactions on Instrumentation and Measurement, 70, 7000715(2021).

    [5] Tam G K L, Cheng Z Q, Lai Y K et al. Registration of 3D point clouds and meshes: a survey from rigid to nonrigid[J]. IEEE Transactions on Visualization and Computer Graphics, 19, 1199-1217(2013).

    [6] Li J N, Wang Z, Xu T F. Three-dimensional object detection technology based on point cloud data[J]. Acta Optica Sinica, 43, 1515001(2023).

    [7] Pan W, Zhu F, Hao Y M et al. Pose measurement method of three-dimensional object based on multi-sensor[J]. Acta Optica Sinica, 39, 0212007(2019).

    [8] Guo Y L, Bennamoun M, Sohel F et al. 3D object recognition in cluttered scenes with local surface features: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 2270-2287(2014).

    [9] Akagündüz E, Ulusoy I. 3D object recognition from range images using transform invariant object representation[J]. Electronics Letters, 46, 1499-1500(2010).

    [10] Bayramog̃lu N, Alatan A A. Shape index SIFT: range image recognition using local features[C], 352-355(2010).

    [11] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 60, 91-110(2004).

    [12] Knopp J, Prasad M, Willems G et al. Hough transform and 3D SURF for robust three dimensional classification[M]. Computer vision-ECCV 2010, 6316, 589-602(2010).

    [13] Guo Y L, Bennamoun M, Sohel F et al. A comprehensive performance evaluation of 3D local feature descriptors[J]. International Journal of Computer Vision, 116, 66-89(2016).

    [14] Chang Y H, Chen N S, Rao L et al. Lidar point cloud descriptor with rotation and translation invariance in dynamic environment[J]. Acta Optica Sinica, 42, 2401007(2022).

    [15] Drost B, Ulrich M, Navab N et al. Model globally, match locally: efficient and robust 3D object recognition[C], 998-1005(2010).

    [16] Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C], 3212-3217(2009).

    [17] Salti S, Tombari F, Di Stefano L. SHOT: unique signatures of histograms for surface and texture description[J]. Computer Vision and Image Understanding, 125, 251-264(2014).

    [18] Cao X M, Gong X X, Xie Q et al. Raw scanned point cloud registration with repetition for aircraft fuel tank inspection[J]. Computer-Aided Design, 144, 103164(2022).

    [19] Yue X F, Liu Z Y, Zhu J et al. Coarse-fine point cloud registration based on local point-pair features and the iterative closest point algorithm[J]. Applied Intelligence, 52, 12569-12583(2022).

    [20] Ge Z X, Shen X L, Gao Q Q et al. A fast point cloud recognition algorithm based on keypoint pair feature[J]. Sensors, 22, 6289(2022).

    [21] Cui X N, Yu M H, Wu L et al. A 6D pose estimation for robotic bin-picking using point-pair features with curvature (cur-PPF)[J]. Sensors, 22, 1805(2022).

    [22] Zhou L, Zhao B, Liang D et al. LDASH: a local feature descriptor of point cloud with high discrimination and strong robustness[J]. Laser & Optoelectronics Progress, 61, 1215007(2024).

    [23] Lin S, Li W T, Wang Y N. Pose estimation of 3D objects based on point pair feature and weighted voting[M]. Intelligent robotics and applications, 13456, 383-394(2022).

    [24] Wei B Y, Du H Z, Zhang Y et al. Planar point cloud registration and relative pose control-based assembly method of industrial parts[J]. Laser & Optoelectronics Progress, 61, 0415001(2024).

    [25] Kiforenko L, Drost B, Tombari F et al. A performance evaluation of point pair features[J]. Computer Vision and Image Understanding, 166, 66-80(2018).

    [26] Yu H S, Fu Q, Sun J et al. Improved 3D-NDT point cloud registration algorithm for indoor mobile robot[J]. Chinese Journal of Scientific Instrument, 40, 151-161(2019).

    [27] Han X F, Jin J S, Wang M J et al. A review of algorithms for filtering the 3D point cloud[J]. Signal Processing: Image Communication, 57, 103-112(2017).

    [28] Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239-256(1992).

    [29] Frome A, Huber D, Kolluri R et al. Recognizing objects in range data using regional point descriptors[M]. Computer Vision-ECCV 2004, 3023, 224-237(2004).

    [30] Pavlov A L, Ovchinnikov G W, Derbyshev D Y et al. AA-ICP: iterative closest point with Anderson acceleration[C], 3407-3412(2018).

    Junjun Lu, Ke Ding, Zuoxi Zhao, Feng Wang. A Novel Three-Dimensional Point Cloud Matching Algorithm Based on Point Region Features and Weighted Voting[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0215007
    Download Citation