• Photonics Research
  • Vol. 9, Issue 9, 1784 (2021)
Tae-Woo Lee, Dohong Kim, Jun Hee Han, Somin Lee, Hoseung Lee, Seungyeop Choi, and Kyung Cheol Choi*
Author Affiliations
  • School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
  • show less
    DOI: 10.1364/PRJ.418160 Cite this Article Set citation alerts
    Tae-Woo Lee, Dohong Kim, Jun Hee Han, Somin Lee, Hoseung Lee, Seungyeop Choi, Kyung Cheol Choi. Suppressing surface plasmon losses to improve the efficiency of blue organic light-emitting diodes using the plasmonic quasi-bandgap phenomenon[J]. Photonics Research, 2021, 9(9): 1784 Copy Citation Text show less
    References

    [1] C. W. Tang, S. A. VanSlyke. Organic electroluminescent diodes. Appl. Phys. Lett., 51, 913-915(1987).

    [2] P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Riedl. Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes. Adv. Mater., 18, 738-741(2006).

    [3] S.-M. Lee, J. H. Kwon, S. Kwon, K. C. Choi. A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans. Electron Devices, 64, 1922-1931(2017).

    [4] E. G. Jeong, Y. Jeon, S. H. Cho, K. C. Choi. Textile-based washable polymer solar cells for optoelectronic modules: toward self-powered smart clothing. Energy Environ. Sci., 12, 1878-1889(2019).

    [5] J. W. Park, D. C. Shin, S. H. Park. Large-area OLED lightings and their applications. Semicond. Sci. Technol., 26, 034002(2011).

    [6] G. Tan, J.-H. Lee, S.-C. Lin, R. Zhu, S.-H. Choi, S. T. Wu. Analysis and optimization on the angular color shift of RGB OLED displays. Opt. Express, 25, 33629-33642(2017).

    [7] X. Yang, X. Xu, G. Zhou. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. J. Mater. Chem. C, 3, 913-944(2015).

    [8] M.-T. Lee, H.-H. Chen, C.-H. Liao, C.-H. Tsai, C. H. Chen. Stable styrylamine-doped blue organic electroluminescent device based on 2-methyl-9,10-di(2-naphthyl)anthracene. Appl. Phys. Lett., 85, 3301-3303(2004).

    [9] S. L. Tao, Z. K. Peng, X. H. Zhang, P. F. Wang, C. S. Lee, S. T. Lee. Highly efficient non-doped blue organic light-emitting diodes based on fluorene derivatives with high thermal stability. Adv. Funct. Mater., 15, 1716-1721(2005).

    [10] C. Bizzarri, F. Hundemer, J. Busch, S. Bräse. Triplet emitters versus TADF emitters in OLEDs: a comparative study. Polyhedron, 140, 51-66(2018).

    [11] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics, 8, 326-332(2014).

    [12] K. Nakao, H. Sasabe, R. Komatsu, Y. Hayasaka, T. Ohsawa, J. Kido. Significant enhancement of blue OLED performances through molecular engineering of pyrimidine-based emitter. Adv. Opt. Mater., 5, 1600843(2017).

    [13] S. K. Jeon, H. J. Park, J. Y. Lee. Highly efficient soluble blue delayed fluorescent and hyperfluorescent organic light-emitting diodes by host engineering. ACS Appl. Mater. Interfaces, 10, 5700-5705(2018).

    [14] Y. Sun, S. R. Forrest. Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography. J. Appl. Phys., 100, 073106(2006).

    [15] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. Leo. White organic light-emitting diodes with fluorescent tube efficiency. Nature, 459, 234-238(2009).

    [16] R. Bathelt, D. Buchhauser, C. Gärditz, R. Paetzold, P. Wellmann. Light extraction from OLEDs for lighting applications through light scattering. Org. Electron., 8, 293-299(2007).

    [17] Y. Sun, S. R. Forrest. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nat. Photonics, 2, 483-487(2008).

    [18] Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, Y. H. Lee. Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals. Adv. Mater., 15, 1214-1218(2003).

    [19] D. Kim, K. Y. Woo, J. H. Han, T.-W. Lee, H. S. Lee, Y.-H. Cho, K. C. Choi. Nanosinusoidal surface zinc oxide for optical out-coupling of inverted organic light-emitting diodes. ACS Photon., 5, 4061-4067(2018).

    [20] M. Thomschke, R. Nitsche, M. Furno, K. Leo. Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes. Appl. Phys. Lett., 94, 083303(2009).

    [21] H. Cho, C. Yun, S. Yoo. Multilayer transparent electrode for organic light-emitting diodes: tuning its optical characteristics. Opt. Express, 18, 3404-3414(2010).

    [22] V. Shaidiuk, S. G. Menabde, N. Park. Effect of structural asymmetry on three layer plasmonic waveguide properties. J. Opt. Soc. Am. B, 33, 963-970(2016).

    [23] D. S. Ginley, C. Bright. Transparent conducting oxides. MRS Bull., 25, 15-18(2011).

    [24] L. Zhou, H.-Y. Xiang, S. Shen, Y.-Q. Li, J.-D. Chen, H.-J. Xie, I. A. Goldthorpe, L.-S. Chen, S.-T. Lee, J.-X. Tang. High-performance flexible organic light-emitting diodes using embedded silver network transparent electrodes. ACS Nano, 8, 12796-12805(2014).

    [25] S. Pang, Y. Hernandez, X. Feng, K. Mullen. Graphene as transparent electrode material for organic electronics. Adv. Mater., 23, 2779-2795(2011).

    [26] T.-R. Chou, S.-H. Chen, Y.-T. Chiang, Y.-T. Lin, C.-Y. Chao. Highly conductive PEDOT:PSS films by post-treatment with dimethyl sulfoxide for ITO-free liquid crystal display. J. Mater. Chem. C, 3, 3760-3766(2015).

    [27] D.-Y. Kim, Y. C. Han, H. C. Kim, E. G. Jeong, K. C. Choi. Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes. Adv. Funct. Mater., 25, 7145-7153(2015).

    [28] S.-M. Lee, C. S. Choi, K. C. Choi, H.-C. Lee. Low resistive transparent and flexible ZnO/Ag/ZnO/Ag/WO3 electrode for organic light-emitting diodes. Org. Electron., 13, 1654-1659(2012).

    [29] D. Y. Yang, S.-M. Lee, W. J. Jang, K. C. Choi. Flexible organic light-emitting diodes with ZnS/Ag/ZnO/Ag/WO3 multilayer electrode as a transparent anode. Org. Electron., 15, 2468-2475(2014).

    [30] J. H. Han, D. Y. Kim, D. Kim, K. C. Choi. Highly conductive and flexible color filter electrode using multilayer film structure. Sci. Rep., 6, 29341(2016).

    [31] J. H. Han, D. Kim, T.-W. Lee, E. G. Jeong, H. S. Lee, K. C. Choi. Ultra-high-resolution organic light-emitting diodes with color conversion electrode. ACS Photon., 5, 1891-1897(2018).

    [32] E. Centurioni. Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. Appl. Opt., 44, 7532-7539(2005).

    [33] M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, K. Leo. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B, 85, 115205(2012).

    [34] H. Cho, J.-M. Choi, S. Yoo. Highly transparent organic light-emitting diodes with a metallic top electrode: the dual role of a Cs2CO3 layer. Opt. Express, 19, 1113-1121(2011).

    Tae-Woo Lee, Dohong Kim, Jun Hee Han, Somin Lee, Hoseung Lee, Seungyeop Choi, Kyung Cheol Choi. Suppressing surface plasmon losses to improve the efficiency of blue organic light-emitting diodes using the plasmonic quasi-bandgap phenomenon[J]. Photonics Research, 2021, 9(9): 1784
    Download Citation