• Photonics Research
  • Vol. 8, Issue 10, 1586 (2020)
Zhexin Zhao1, Dylan S. Black1, R. Joel England2, Tyler W. Hughes1, Yu Miao1, Olav Solgaard1, Robert L. Byer1, and Shanhui Fan1、*
Author Affiliations
  • 1Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
  • 2SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
  • show less
    DOI: 10.1364/PRJ.394127 Cite this Article Set citation alerts
    Zhexin Zhao, Dylan S. Black, R. Joel England, Tyler W. Hughes, Yu Miao, Olav Solgaard, Robert L. Byer, Shanhui Fan. Design of a multichannel photonic crystal dielectric laser accelerator[J]. Photonics Research, 2020, 8(10): 1586 Copy Citation Text show less

    Abstract

    To be useful for most scientific and medical applications, compact particle accelerators will require much higher average current than enabled by current architectures. For this purpose, we propose a photonic crystal architecture for a dielectric laser accelerator, referred to as a multi-input multi-output silicon accelerator (MIMOSA), that enables simultaneous acceleration of multiple electron beams, increasing the total electron throughput by at least 1 order of magnitude. To achieve this, we show that the photonic crystal must support a mode at the Γ point in reciprocal space, with a normalized frequency equal to the normalized speed of the phase-matched electron. We show that the figure of merit of the MIMOSA can be inferred from the eigenmodes of the corresponding infinitely periodic structure, which provides a powerful approach to design such devices. Additionally, we extend the MIMOSA architecture to electron deflectors and other electron manipulation functionalities. These additional functionalities, combined with the increased electron throughput of these devices, permit all-optical on-chip manipulation of electron beams in a fully integrated architecture compatible with current fabrication technologies, which opens the way to unconventional electron beam shaping, imaging, and radiation generation.
    ω(Γ)=ω0=β×2πmc/L,(1)

    View in Article

    Ezn(x,z)=exp(j2πz/L){Acncosh[α(xxn)]+Asnsinh[α(xxn)]},(2)

    View in Article

    Fz(x)=qRe{exp(jϕ0){Acncosh[α(xxn)]+Asnsinh[α(xxn)]}},(3)

    View in Article

    Fx(x)=q1γRe{jexp(jϕ0){Acnsinh[α(xxn)]+Asncosh[α(xxn)]}},(4)

    View in Article

    ××E=ω2c2ϵEjωμ0J,(A1)

    View in Article

    E(r)=U(r)exp(jkxxjkzz),(A2)

    View in Article

    E(r)=Ep(r)exp(jkzz),(A3)

    View in Article

    Ep(r)=m=m=em(x)exp(jkmz),(A4)

    View in Article

    ωβc=km+kz=2πmL+kz.(A5)

    View in Article

    Em(r)=(em,x(x)0em,z(x))exp(jkmzjkzz),(A6)

    View in Article

    ezn(x)=dneα(xxn)+cneα(xxn),exn(x)=km+kzjα[dneα(xxn)cneα(xxn)],(A7)

    View in Article

    ezn(x)=Acncosh[α(xxn)]+Asnsinh[α(xxn)],exn(x)=km+kzjα{Asncosh[α(xxn)]+Acnsinh[α(xxn)]},(A8)

    View in Article

    Einc(r,t)=E0exp(jωtjk0x)z^,(A9)

    View in Article

    E(x,z)=a+U(x,z;kx,kz=0)exp(jkxx)+aU(x,z;kx,kz=0)exp(jkxx),(A10)

    View in Article

    e1(x)=a+ep(x;kx)exp(jkxx)+aep(x;kx)exp(jkxx),(A11)

    View in Article

    Ac,1n=a+cexp(jkxxn)+acexp(jkxxn),(A12)

    View in Article

    As,1n=a+sexp(jkxxn)+asexp(jkxxn),(A13)

    View in Article

    a+c=a+ep,z(mod(N+1,2)2Lx;kx),ac=aep.z(mod(N+1,2)2Lx;kx),a+s=jαkma+ep,x(mod(N+1,2)2Lx;kx),as=jαkmaep,x(mod(N+1,2)2Lx;kx).(A14)

    View in Article

    e2(x)=Mx[e1(x)]=aMx[ep(x;kx)]exp(jkxx)+a+Mx[ep(x;kx)]exp(jkxx),(A15)

    View in Article

    Mx[exeyez]=[exeyez].(A16)

    View in Article

    Ac,2n=acexp(jkxxn)+a+cexp(jkxxn),(A17)

    View in Article

    As,2n=asexp(jkxxn)a+sexp(jkxxn).(A18)

    View in Article

    Ac,2n=Ac,1N+1n,As,2n=As,1N+1n.(A19)

    View in Article

    e3(x)=e1(x)+exp(jθ)e2(x).(A20)

    View in Article

    Ac,3n=Ac,1n+exp(jθ)Ac,2n=a+c[exp(jkxxn)+exp(jθ)exp(jkxxn)]+ac[exp(jkxxn)+exp(jθ)exp(jkxxn)],(A21)

    View in Article

    As,3n=As,1n+exp(jθ)As,2n=a+s[exp(jkxxn)exp(jθ)exp(jkxxn)]+as[exp(jkxxn)exp(jθ)exp(jkxxn)].(A22)

    View in Article

    Ac,3n=2(a+c+ac)cos(kxxn),As,3n=2j(a+sas)sin(kxxn).(A23)

    View in Article

    Ac,3n=2j(a+cac)sin(kxxn),As,3n=2(a+s+as)cos(kxxn).(A24)

    View in Article

    τ=α1N+α2,(B1)

    View in Article

    Zhexin Zhao, Dylan S. Black, R. Joel England, Tyler W. Hughes, Yu Miao, Olav Solgaard, Robert L. Byer, Shanhui Fan. Design of a multichannel photonic crystal dielectric laser accelerator[J]. Photonics Research, 2020, 8(10): 1586
    Download Citation