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To be useful for most scientific and medical applications, compact particle accelerators will require much higher
average current than enabled by current architectures. For this purpose, we propose a photonic crystal architec-
ture for a dielectric laser accelerator, referred to as a multi-input multi-output silicon accelerator (MIMOSA), that
enables simultaneous acceleration of multiple electron beams, increasing the total electron throughput by at least
1 order of magnitude. To achieve this, we show that the photonic crystal must support a mode at the Γ point in
reciprocal space, with a normalized frequency equal to the normalized speed of the phase-matched electron. We
show that the figure of merit of the MIMOSA can be inferred from the eigenmodes of the corresponding infinitely
periodic structure, which provides a powerful approach to design such devices. Additionally, we extend the
MIMOSA architecture to electron deflectors and other electron manipulation functionalities. These additional
functionalities, combined with the increased electron throughput of these devices, permit all-optical on-chip
manipulation of electron beams in a fully integrated architecture compatible with current fabrication
technologies, which opens the way to unconventional electron beam shaping, imaging, and radiation
generation. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.394127

1. INTRODUCTION

Miniaturization of accelerators is a rapidly growing field [1–4].
Among them, dielectric laser accelerators (DLAs) accelerate
charged particles using the evanescent fields of dielectric struc-
tures driven by femtosecond laser pulses [4–8]. Due to the high
damage threshold of dielectric materials in the near-infrared,
the acceleration gradient of DLAs can be more than 10 times
higher than conventional radio-frequency accelerators [9–12].
Recent progress in the integration of DLAs with photonic cir-
cuits has enabled the development of chip-scale accelerators,
[13–18], which promise to further increase the compactness
and practicality of this scheme. For subrelativistic and moder-
ately relativistic electrons, focusing provided by laser-driven
techniques, such as alternating phase focusing [19,20], enables
stable electron beam transport and acceleration for long
distances.

To promote the application of DLAs in both fundamental
science and medical therapy [4,21,22], it is important to deliver
high electron currents. However, since the geometric dimen-
sions of currently existing DLA designs are on the wavelength
scale, where the wavelength corresponds to that of their near-
infrared drive lasers, it is intrinsically challenging to deliver an
electron beam with high current through a single narrow

electron channel as currently used in DLAs [19]. Motivated
by this challenge, we explore a photonic crystal DLA architec-
ture that has multiple electron channels (Fig. 1). We show that
straightforward design principles lead to the electromagnetic
fields inside different channels being almost identical, which
enables simultaneous acceleration or manipulation of N
phase-locked electron beams, increasing the total current by
a factor of N.

2. DESIGN PRINCIPLES

Typical DLAs consist of a pair of dielectric gratings such as the
dual silicon pillar DLAs illustrated in Fig. 1(a) [12]. When the
laser beams illuminate the gratings, the near fields can be used
to accelerate the electron beam that travels in the gap between
two gratings. Although the height of the electron channel can
be several micrometers, its width is limited to the submicrom-
eter scale, due to the evanescent nature of the near fields. The
small channel width limits the total electron current. To bypass
this constraint, we propose a DLA architecture that consists of
multiple parallel electron channels as shown in Fig. 1(b). The
idea of simultaneous acceleration of multiple parallel beams has
also been studied in millimeter wave accelerators [23–25].
However, the underlying physics and design principles of

1586 Vol. 8, No. 10 / October 2020 / Photonics Research Research Article

2327-9125/20/101586-13 Journal © 2020 Chinese Laser Press

https://orcid.org/0000-0003-2231-2817
https://orcid.org/0000-0003-2231-2817
https://orcid.org/0000-0003-2231-2817
https://orcid.org/0000-0001-6110-7758
https://orcid.org/0000-0001-6110-7758
https://orcid.org/0000-0001-6110-7758
https://orcid.org/0000-0002-0081-9732
https://orcid.org/0000-0002-0081-9732
https://orcid.org/0000-0002-0081-9732
mailto:shanhui@stanford.edu
mailto:shanhui@stanford.edu
https://doi.org/10.1364/PRJ.394127


multichannel DLAs are fundamentally different from those of
the millimeter-wave accelerators. Since each row of dielectric
grating in the multichannel DLA is identical, this DLA struc-
ture is a finite photonic crystal. In contrast to previous single
channel copropagating photonic crystal waveguide accelerators
[26,27], our approach incorporates a multichannel design and
operates based on side illumination to increase the total current.
Consistent with Ref. [28], we focus on silicon pillars and refer
this design as a multi-input multi-output silicon accelerator
(MIMOSA).

We find that the essential characteristics of the MIMOSA
are captured in the band structure and eigenmode properties of
the underlying infinite photonic crystal. For simplicity, we
study a two-dimensional photonic crystal with a rectangular
lattice (Fig. 2), where the dielectric pillars extend uniformly
in the y direction. Previous studies confirm the validity of using
a two-dimensional calculation to describe a photonic crystal
with pillar height larger than the wavelength [28,29]. In a
two-dimensional photonic crystal, the fields can be decom-
posed into TE (with Ey, Hx , and Hz nonzero) and TM (with
Ex , Ez , and Hy nonzero) polarization [30]. Since only the TM
polarization provides acceleration, we study only the TM
polarization in this work. The unit cell and the band diagram
of the photonic crystal underlying the MIMOSA are illustrated
in Figs. 2(a) and 2(c), respectively. We assume that the elec-
trons travel along the z direction and are centered around
x � 0 and that the incident light propagates along the x direc-
tion. Therefore, the incident laser can excite eigenmodes lying
on the ΓX direction in the reciprocal space [Fig. 2(b)].
Furthermore, the mode at the Γ point has the same phase in
each unit cell. Thus, to ensure that the electron beams in differ-
ent channels get the same acceleration, the mode at the Γ point
should be excited dominantly. Therefore, the frequency ω of
the eigenmode at the Γ point should match the frequency
ω0 of the incident light. In addition, in order to satisfy the
phase synchronization condition for the DLA [29,31], we need
to have

ω�Γ� � ω0 � β × 2πmc∕L, (1)

where c is the speed of light, β � v∕c where v is the speed of
electron, L is the periodicity along the z direction, and m is the
diffraction order. In typical DLAs, the amplitude of the first-
order diffraction is stronger than that of higher-order diffrac-
tion, so we take m � 1 in the synchronization condition.

Additionally, the unit cell of typical photonic crystals may
have certain symmetries. In the demonstration shown in Fig. 2,
the mirror-x and mirror-z symmetries of the unit cell require
that the acceleration mode should also have certain symmetries.
To accelerate the electron traveling along x � 0, the mode
should be symmetric with respect to the mirror plane x � 0
[red dots in Fig. 2(c)]. And to couple to plane waves propagat-
ing in the x direction, the mode should have odd mirror-z sym-
metry. In other words, the photonic crystal underlying the
MIMOSA should support an eigenmode at normalized fre-
quency (frequency normalized by c∕L) β with odd mirror-z
and even mirror-x symmetry; below we refer to such a mode
as an acceleration mode. This condition on the symmetry of the
acceleration mode, together with Eq. (1), represents one of the
main contributions of this study and is referred to as the band
structure condition below. It can be satisfied through tuning
the geometrical parameters of the dielectric pillar.

Moreover, the figure of merit of the MIMOSA can also be
derived from eigenmode analysis of the underlying photonic
crystal. This “acceleration factor" g [32–34] is the maximal

Fig. 1. Schematic of (a) a dual-pillar DLA and (b) a multichannel
DLA. Two laser pulses (propagating in�x directions) incident on the
DLA are indicated by the orange arrows. Electrons travel inside parallel
channels along the z direction.

Fig. 2. (a) Illustration of the photonic crystal where the unit cell is
highlighted in the dashed red box. The electron propagation direction
is indicated by the gray arrow. 2a, 2b, 2d , and L represent pillar length,
pillar width, gap width, and the periodicity in the electron propagation
direction, respectively. (b) The reciprocal Brillouin zone. (c) Band dia-
gram of the TM mode of the photonic crystal with L � 1 μm,
a � 0.3 μm, b � 0.86 μm, and d � 0.2 μm. Big (small) black dots
represent eigenmodes with odd (even) mirror-z symmetry, and red
(blue) dots represent eigenmodes with even (odd) mirror-x symmetry.
(d), (e) Field profiles of the eigenmodes at the Γ point with normalized
frequency 0.500 and 0.411, respectively.
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acceleration gradient at the center of the electron channel di-
vided by the maximal electric field inside the dielectric material.
From the field profile of the acceleration mode [Fig. 2(d)],
which is computed for a structure that is infinitely periodic
along both the x and z directions, we can calculate the accel-
eration factor, which turns out to be close to the acceleration
factor of the MIMOSA, where the structure is finite along the x
direction.

Based on the discussions above, the MIMOSA design pro-
cedure is summarized as follows. (1) Given the electron speed
and the frequency of the excitation laser, the periodicity (L) of
the photonic crystal along the electron propagation direction is
determined by Eq. (1). (2) The periodicity along the transverse
direction and the shape of the dielectric pillar in the unit cell
can be tuned such that the band structure condition is satisfied
and the width of the electron channel exceeds a value set by
experimental considerations. (3) Using the acceleration factor
of the acceleration mode as the objective function, the unit cell
of the photonic crystal is optimized with the constraints in (1)
and (2). (4) The procedure above involves only the study of an
infinitely periodic photonic crystal. After such a photonic crys-
tal is designed, we can confirm the design by simulating a pho-
tonic crystal with a finite number of periods as we will discuss
in Section 3.

3. DEMONSTRATION AND ANALYSIS

Using the design procedure as discussed above, we demonstrate
the design of a MIMOSA for electron speed 0.5c (β � 0.5)
with rectangular silicon pillars and a central laser wavelength
at 2 μm (λ0 � 2 μm). The same design principles apply to
other electron speeds, pillar shapes, dielectric material systems,
and laser wavelengths. The periodicity of the photonic crystal is
determined by the phase synchronization condition L �
βλ0 � 1 μm [29]. We denote the half length and width of
the rectangular pillar as a and b, respectively, and half width
of the electron channel as d . Larger channel width generally
results in higher beam current but lower acceleration gradient
due to the exponential decay of the near fields. To compromise
between the requirements of high acceleration gradient and
wide channel width, we choose d � 0.2 μm, consistent with
previous studies [12,28]. By tuning a, b, we find that with
parameters a � 0.3 μm and b � 0.86 μm, the photonic crys-
tal supports an acceleration mode at normalized frequency 0.5
[Fig. 2(c)] with high acceleration factor. The mode profile is
shown in Fig. 2(d), from which the inferred acceleration factor
is g � 0.51.

To verify our design principles, we truncate the photonic
crystal in the x direction to specify a finite number of channels
and perform a full wave simulation [35]. For demonstration
purposes, we limit the number of electron channels to
N � 3. The field distributions are shown in Fig. 3, where the
two driving plane waves are symmetric with respect to x � 0.
The fields inside different electron channels are almost identical
and strongly resemble the eigenmode shown in Fig. 2(d), cal-
culated for an infinite photonic crystal. From Fig. 3(b), we find
that the largest E field is inside the vacuum rather than inside
the dielectric, which contributes to the high acceleration factor

[34]. This holds when the rectangle pillars have rounded cor-
ners with small radius [33].

When the synchronization condition Eq. (1) is satisfied for
m � 1, and in the limit of a perfectly rigid electron beam, only
the first diffraction order interacts with the electron beam [31].
The corresponding longitudinal field distribution of the first
diffraction order has the following form inside the electron
channel [12,28]:

En
z �x, z� � exp�−j2πz∕L�fAn

c cosh�α�x − xn��
� An

s sinh�α�x − xn��g, (2)

where An
c and An

s are the amplitudes of the “cosh” and “sinh”
components, respectively, in the nth electron channel, α �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2π∕L�2 − �ω∕c�2
p

characterizes the decay of the evanescent
wave inside the electron channel, and xn is the center of the nth
channel. An

c and An
s depend on the incident waves and are

discussed in detail in Appendix A. From Maxwell’s equations,
we can get Ex and Hy. The synchronized Lorentz force
F � q�E� v × B� on the electron is

Fz�x� � q Refexp�jϕ0�fAn
c cosh�α�x − xn��

� An
s sinh�α�x − xn��gg, (3)

Fx�x� � q
1

γ
Refj exp�jϕ0�fAn

c sinh�α�x − xn��

� An
s cosh�α�x − xn��gg, (4)

and Fy�x� � 0, where q � −e is the electron charge, the elec-
tron phase ϕ0 � ωt0 is the phase of the oscillating field expe-
rienced by an electron entering the structure at time t0 with
respect to the reference particle entering at t � 0, and
γ � 1∕

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
is the familiar relativistic factor [29,31].

Equations (3) and (4) suggest that the cosh component can
provide acceleration (deceleration) or focusing (defocusing),

Fig. 3. (a) Schematic of the dual drive simulation. The dashed box
highlights the unit cell, the red arrows represent the illuminating lasers,
and the gray arrows indicate the electron propagation direction. Under
in-phase and equal amplitude illumination at wavelength λ0 � 2 μm,
the magnitude of E field is shown in (b), while Ez , Ex , and Z 0Hy are
shown in (c), where Z 0 is free-space impedance.
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depending on ϕ0, while the sinh component can provide trans-
verse deflection.

Figure 4(a) shows the acceleration force Fz where we choose
ϕ0 such that Fz is maximized at x � 0. Again choosing ϕ0 such
that the force is maximized, the transverse force Fx is shown in
Fig. 4(b), which focuses the electron to the channel center [29].
The longitudinal forces in different channels differ by less than
7%, which confirms that the acceleration in different channels
is almost identical. This holds even better as the number of
channels increases, for instance to 10, as shown in Appendix B.

The acceleration factor g, derived from the cosh component
of the MIMOSA, is jAn

c j∕Emax in the nth electron channel,
where Emax is the maximal electric field inside the dielectric.
We find the cosh component to be dominant over the sinh
component in each channel. Moreover, the cosh components
have similar amplitudes in different channels. An

c ∕Emax �
0.512, 0.494, and 0.512 in channels 1, 2, and 3, respectively
[Fig. 4(c)]. These acceleration factors agree with the prediction
made by eigenmode analysis, which predicts g � 0.51. Due
to the mirror-x symmetry of the excitation, An

c (An
s ) in channels

1 and 3 are equal in amplitude with same (opposite) sign.
Moreover, An

c are in phase with the symmetric excitation
(Appendix A). Therefore, the electrons with the same entering
time experience almost identical forces in different channels.

The bandwidth of the MIMOSA is 62 nm, within which
the difference between Ac in each channel and Ac in the central
channel at central frequency is less than 10% [Fig. 4(d)]. Such
bandwidth corresponds to 95 fs pulse duration of a transform-
limited Gaussian pulse at 2 μm.With such a pulse and a fluence
half of the damage fluence of silicon (0.17 J∕cm2 [36]), the
predicted acceleration gradient can reach 0.56 GeV/m.

However, as the number of electron channels increases, the
bandwidth of the MIMOSA decreases. The bandwidth approx-
imately scales inversely with the number of pillars, since the
MIMOSA can be regarded as an optical resonator where the
stored energy scales linearly with the number of pillars while
the energy leakage rate remains roughly constant. For the studied
MIMOSA, the bandwidth (Δλ), in nanometers (nm), as a func-
tion of the number of channels (N ) is estimated as Δλ�nm� �
144∕�N − 1.33� when N ≥ 4 as shown in Fig. 5(a). If we

choose a transform-limited Gaussian pulse with central wave-
length at 2 μm and bandwidth matching the bandwidth of
the MIMOSA, the relation between the pulse duration (τ)
and the number of channels is linear [Fig. 5(b)]. The estimated
scaling rule is τ�fs� � 40.8 × N − 54.4 forN ≥ 4, where τ is the
full width at half-maximum (FWHM) pulse duration in femto-
seconds (Appendix B). Therefore, due to the bandwidth scaling
rule, the number of electron channels cannot be arbitrarily large
and should be chosen to match the bandwidth of the excitation
pulse. For the subpicosecond optical pulses, the laser-induced
damage fluence remains approximately constant [14,37], which
is about 0.17 J∕cm2 for bulk silicon [36]. Therefore, the maxi-
mal electric field scales as inverse square root of the laser pulse
duration, i.e., Emax ∼ 1∕

ffiffiffi
τ

p
. Thus, as N increases, the maximal

electric field decreases, which functions as a limiting factor for
the number of channels. To achieve 0.3 GeV/m acceleration gra-
dient at half of the damage fluence, the maximal number of
channels is 10, with a matched pulse duration of 350 fs.
Thus, increase of total current by 1 order of magnitude can
be achieved without sacrificing the acceleration gradient.

Due to the broadband nature of the MIMOSA, we antici-
pate the long-range wakefield effects to be insignificant. The
short-range wakefield effects and beam loading properties are
similar to those in dual-grating DLAs [5,38,39], and a brief
discussion is presented in Appendix D. The space-charge effect
in MIMOSA is similar to that in previous single-channel DLAs
[4,17], which is briefly discussed in Appendix E. Moreover, for
applications like medical therapy, the required average number
of electrons per micro-bunch per channel is only slightly above
1 (Appendix C). Therefore, both the space-charge and wake-
field effects are negligible in the MIMOSA operating for medi-
cal applications.

To match the phase synchronization condition as the elec-
trons get accelerated, we can gradually change the geometric

Fig. 4. (a) Longitudinal and (b) transverse force distribution inside
each electron channel. (c) Amplitudes of the cosh and sinh compo-
nents in each channel at central frequency and (d) their frequency
dependence.

Fig. 5. (a) Bandwidth of the MIMOSA versus number of electron
channels. The geometric parameters are the same as those studied in
Section 3. (b) The corresponding pulse duration of a transform-limited
Gaussian pulse with central wavelength 2 μm and a bandwidth match-
ing the bandwidth of the MIMOSA.
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parameters of the MIMOSA unit cell such that the band struc-
ture condition [Eq. (1)] is always satisfied. The tapering of gra-
ting periods demonstrated previously [40,41] can be applied to
MIMOSA designs straightforwardly to achieve continuous
phase velocity matching. The shape of dielectric pillar can also
be tapered such that the frequency of the acceleration mode at
the Γ point continuously matches the central frequency of the
driving laser. Furthermore, since the electromagnetic field
distributions are almost identical from channel to channel,
the alternating phase focusing [19] can also be applied to
MIMOSA for long-distance acceleration with stable beam
transport.

4. DEFLECTOR

Instead of providing multichannel acceleration, the MIMOSA
can be designed to manipulate electron beams in many other
ways. In this section, we consider a MIMOSA designed for si-
multaneous deflection ofN electron beams [28,42]. The design
procedure is almost the same as that of an accelerating-mode
MIMOSA. In contrast to the acceleration mode, the deflection
mode in the photonic crystal with rectangular pillars has odd
mirror-x symmetry. The figure of merit of the deflector is the
ratio between the deflection gradient at channel center and the
maximal electric field inside the dielectric, i.e., As∕Emax. We
start with the photonic crystal shown in Section 3 to demon-
strate the design procedures (2) and (3). Although the photonic
crystal we show in Section 3 supports a deflection eigenmode at
frequency around ω � 0.5 × 2πc∕L, eigenmode analysis shows
that As∕Emax is low. Nevertheless, the deflection mode at fre-
quency ω � 0.411 × 2πc∕L has high As∕Emax. To satisfy the
band structure condition, we tune the geometric parameters of
the pillar to a � 0.26 μm and b � 0.66 μm such that the nor-
malized frequency of this deflection mode equals β [Fig. 6(a)].
We find that the field distributions of the eigenmode remain
qualitatively unchanged as indicated by comparing the deflec-
tion mode before [Fig. 2(e)] and after [Fig. 6(b)] the parameter
tuning.

To validate the design of the photonic crystal electron de-
flector, we truncate the photonic crystal in the x direction to
have three electron channels and perform a full wave simulation
of such finite-width structure. The two driving plane waves
propagating in the x direction are set to have odd mirror sym-
metry with respect to x � 0. The field distributions are shown
in Fig. 7, which are almost identical from channel to channel.
The longitudinal and transverse Lorentz forces calculated from
the field distributions are shown in Figs. 8(a) and 8(b), respec-
tively. Since the relative phase between the peaks of longi-
tudinal and transverse forces is π∕2, the longitudinal forces
almost vanish when the transverse forces peak. The deflection
force has a cosh-like shape inside the channel, and the channel-
to-channel variance is within 7% [Fig. 8(b)]. The amplitudes of
the cosh and sinh components are shown in Fig. 8(c). The
fields inside the electron channels are dominantly sinh compo-
nents, where As∕Emax � 0.412, 0.398, 0.412 in channels 1, 2,

Fig. 6. (a) Band diagram of a photonic crystal deflecting structure
with L � 1 μm, a � 0.26 μm, b � 0.66 μm, and d � 0.2 μm. The
symbols have the same meaning as in Fig. 2(c). The field profiles of the
deflection mode at the Γ point with normalized frequency 0.5 (indi-
cated by the blue arrow) are shown in (b).

Fig. 7. Field distributions in the three-channel deflecting-mode
MIMOSA under antisymmetric excitation. (a) Electric field
amplitudes; (b) field components Ez , Ex , and Z 0Hy .

Fig. 8. Longitudinal and transverse force distributions in a deflect-
ing-mode MIMOSA are shown in (a) and (b), respectively, with the
proper electron phase that maximizes each force. (c) Amplitudes of the
cosh and sinh components in different channels at central frequency;
(d) their frequency dependence.
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and 3, respectively. Such a multichannel electron deflector also
has large bandwidth as indicated by Fig. 8(d). Its bandwidth
shares a similar scaling rule with the number of electron chan-
nels as accelerating-mode MIMOSAs. This photonic crystal
electron deflector is a natural extension of the laser-driven elec-
tron deflectors, which were recently experimentally investigated
[28,29]. A particle tracking study is provided in Appendix F.

5. CENTRALIZER

The MIMOSA can be designed to achieve more complicated
functions. In this section, we further explore its functionalities
by studying the modes in MIMOSA with different field distri-
butions from channel to channel. As an example, we demon-
strate a three-channel centralizer, which deflects the electron
beam on the two outside channels to the central channel
(Fig. 9). This functionality provides the possibility of combin-
ing multiple electron beams (super-beam) to form a high-
brightness, high-current beam [43]. The centralizer preserves
the emittance of the super-beam while allowing the beamlets
traveling in the individual channel to collide at a fixed point.
The total emittance is at best a linear addition of the emittance
of the individual beamlets.

The underlying photonic crystal is chosen such that the ex-
citation frequency is within the band gap of the photonic crys-
tal along the ΓX direction. Figure 10(a) shows the band
structure of a photonic crystal with L � 1 μm, a � 0.26 μm,
b � 0.56 μm, and d � 0.2 μm. The excitation frequency
(ω0 � 0.5 × 2πc∕L) is within the band gap of the photonic
crystal.

With symmetric dual drive excitation [Figs. 10(b) and
10(c)], the fields generally have larger magnitudes in the outside
channels and smaller magnitudes in the central channel. The
force distributions inside different channels are shown in
Figs. 11(a) and 11(b). The electron phase should be chosen
such that the transverse forces are maximized. We find that,
at this electron phase, the electron beam in the bottom channel
is deflected up while the electron beam in the top channel is
deflected down. The electron beam traveling along the central

channel experiences a small focusing force. Therefore, this de-
vice can centralize the electron beams towards the central chan-
nel. The amplitudes of the cosh and sinh components are
shown in Fig. 11(c). We can find that the fields inside the cen-
tral channel have only the cosh component while the fields in
the two outer channels have dominantly sinh components with

Fig. 9. Schematic of a multichannel centralizer. With symmetric
excitation, the transverse forces inside the electron channels are indi-
cated by the small red arrows. The gray arrows indicate the trajectories
of electron beams.

Fig. 10. (a) Band structure of the infinitely periodic photonic crystal
underlying the electron centralizer. The periodicities in the z and x
directions are L � 1 μm and Lx � 1.52 μm, and the dimensions
of the rectangular pillar are a � 0.26 μm and b � 0.56 μm. The
green arrow indicates that the incident frequency is within the band
gap. With symmetric excitation, the electric field amplitudes are
shown in (b), while the nonzero field components Ez , Ex , and
Z 0Hy are shown in (c).

Fig. 11. MIMOSA functioning as a centralizer. (a) and (b) show
the longitudinal and transverse forces, respectively, with the electron
phases that maximize the longitudinal or transverse forces. The am-
plitudes of the cosh and sinh components are shown in (c), and their
frequency dependence is shown in (d).
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equal magnitudes and opposite signs. This centralizer is also
with broadband as suggested by the relatively flat frequency
dependence shown in Fig. 11(d).

6. DISCUSSIONS AND CONCLUSIONS

The diverse functionalities of MIMOSA, as discussed above,
enable sophisticated control of multiple electron beams. For
example, the MIMOSA can provide a platform to study the
interference of phase-locked electron beams with the added
capability of acceleration, attosecond-scale bunching, and co-
herent deflection. Furthermore, the interaction between multi-
ple phase-locked electron beams with a photonic-crystal-based
radiation generator can potentially further boost the radiation
generation [44]. The experimental demonstration of MIMOSA
is also under investigation.

In conclusion, we here propose a DLA architecture based on
photonic crystals that enables simultaneous acceleration of
multiple electron beams and has the potential to increase
the total beam current by at least 1 order of magnitude. We
find that the characteristics of the MIMOSA can be inferred
from the band structure and eigenmodes of the underlying pho-
tonic crystal, which provides a simple approach to designing
such MIMOSA structures. The underlying photonic crystal
should support an eigenmode at the Γ point with normalized
frequency β. Numerical studies confirm that the field distribu-
tions in different channels are indeed almost identical and the
acceleration factor is qualitatively consistent with the eigen-
mode prediction. We further extend the principle to design
electron deflectors and other electron manipulation devices
based on photonic crystals. Our study opens new opportunities
in dielectric laser accelerators and, in general, nanoscale electron
manipulation with lasers.

APPENDIX A: FIELDS IN THE MIMOSA

In this appendix, we derive the expression of the electromag-
netic fields inside multiple electron channels in the MIMOSA.
The derivations partially follow that in Ref. [42].

Assuming that the dielectric is nonmagnetic, linear, and iso-
tropic, the electric field is a solution to Maxwell’s equations

∇ × ∇ × E � ω2

c2
ϵE − jωμ0J, (A1)

where ϵ is the relative permittivity, μ0 is the vacuum permeabil-
ity, J is the excitation current, and we consider the harmonic
fields, with exp�jωt� time dependence. In the quasi-2D
approximation, the structure is uniform along the y direction
and incident plane waves are perpendicular to the y direction.
Thus, the fields are invariant along the y direction and can be
decomposed into TM and TE polarization. We further limit
our study to the TM polarization (with nonzero Ex , Ez ,
and Hy components), which only generates forces in the
x	z plane.

The fields inside the photonic crystal satisfy the Bloch theo-
rem when J � 0. If the 2D photonic crystal is periodic in both
the x and z directions, i.e., ϵ�r� � ϵ�r� nxLx x̂ � nzLẑ� where
nx and nz are arbitrary integers; Lx and L are the periodicity in
the x and z directions, respectively; the fields satisfy

E�r� � U�r� exp�−jkxx − jkzz�, (A2)

where the periodic part U �r� � U �r� nxLx x̂ � nzLẑ�,
and kx , kz are Bloch wave vectors in the x and z directions,
respectively.

The MIMOSA generally has finite number of channels and
can be regarded as a 2D photonic crystal truncated in the x
direction. Thus, in the MIMOSA, which is finite in the x di-
rection and periodic along the z direction, i.e., ϵ�r� �
ϵ�r� Lẑ�, the fields have the following form:

E�r� � Ep�r� exp�−jkzz�, (A3)

where the periodic field Ep�r� � Ep�r� Lẑ�. The periodic Ep
can be further expanded into a Fourier series

Ep�r� �
Xm�∞

m�−∞
em�x� exp�−jkmz�, (A4)

where km � 2πm∕L. Suppose only the mth-order diffraction is
phase synchronized with the electron beam, i.e.,

ω

βc
� km � kz �

2πm
L

� kz : (A5)

The forces generated by all other diffraction orders on the elec-
tron are averaged over one period to be zero. The synchronized
electric fields have the form

Em�r� �
� em,x�x�

0
em,z�x�

�
exp�−jkmz − jkzz�, (A6)

where em,x and em,z are the phasor notations. In the following
derivation, we consider only this diffraction order and drop the
diffraction order index m.

The synchronized field (phasor) inside the nth electron
channel generally has the following form:

enz �x� � dne−α�x−xn� � cneα�x−xn�,

enx�x� �
km � kz

jα
�dne−α�x−xn� − cneα�x−xn��, (A7)

where α �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�km � kz�2 − �ω∕c�2

p
, dn and cn are amplitudes

of the evanescent waves decaying away from the dielectric on
two sides of the electron channel, and xn is the center of the nth
channel. Supposing the periodicity along the x direction is Lx
and the center of MIMOSA is at x � 0, we find xn �
�n − �N � 1�∕2�Lx . Due to the velocity of the electron being
lower than the speed of light (β < 1), the wavevector
km � kz � ω∕βc > ω∕c, and α is always real. This indicates
that the synchronized field inside the electron channel is always
evanescent, and α characterizes the decay of the evanescent
wave inside the electron channel. We can reformulate the pha-
sor with hyperbolic cosine and sine functions:

enz �x� � An
c cosh�α�x − xn�� � An

s sinh�α�x − xn��,

enx�x� �
km � kz

jα
fAn

s cosh�α�x − xn��

� An
c sinh�α�x − xn��g, (A8)

where An
c � dn � cn and An

s � dn − cn are the amplitudes of
the cosh and sinh components.
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Case 1: If the MIMOSA is excited by a plane wave polarized
in the z direction and propagating in the x direction:

Einc�r, t� � E0 exp�jωt − jk0x�ẑ, (A9)

where k0 � ω∕c, the eigenmodes of the photonic crystal with
kz � 0 and frequency ω can be excited. Suppose that only two
eigenmodes with frequency ω and a Bloch wavevector (�kx ,
kz � 0) are excited. The field inside the truncated photonic
crystal can be approximated by a sum of these two counterpro-
pagating Bloch waves, which has the following form:

E�x, z� � a�U�x, z; kx , kz � 0� exp�−jkxx�
� a−U�x, z; −kx , kz � 0� exp�jkxx�, (A10)

where a� and a− are amplitudes of the two counterpropagating
Bloch waves [Eq. (A2)]. Thus, the synchronized field (phasor)
should have the form

e1�x� � a�ep�x; kx� exp�−jkxx� � a−ep�x; −kx� exp�jkxx�,
(A11)

where the subscript 1 highlights that this is the phasor for Case
1, and the periodic part ep�x;�kx� � ep�x � Lx ;�kx�.

Comparing Eqs. (A8) and (A9), we find that An
c and An

s in
Case 1 should have the form

An
c,1 � ac� exp�−jkxxn� � ac−exp�jkxxn�, (A12)

An
s,1 � as� exp�−jkxxn� � as−exp�jkxxn�, (A13)

where the coefficients ac�, ac−, as�, and as− are independent of n
and have the following form:

ac� � a�ep,z

�
−
mod�N � 1, 2�

2
Lx ; kx

�
,

ac− � a−ep:z

�
−
mod�N � 1, 2�

2
Lx ; −kx

�
,

as� � jα
km

a�ep,x

�
−
mod�N � 1, 2�

2
Lx ; kx

�
,

as− �
jα
km

a−ep,x

�
−
mod�N � 1, 2�

2
Lx ; −kx

�
: (A14)

From Eqs. (A12) and (A13), we find that generally the ampli-
tudes of cosh and sinh components (An

c,1 and A
n
s,1) are different

from channel to channel in terms of both magnitudes and
phases. However, when kx � 0, the amplitudes of the cosh
and sinh components in different electron channels become
identical. This implies that even with single side drive, it is pos-
sible to achieve identical acceleration in multiple channels of
the MIMOSA. Nevertheless, the condition kx � 0 is usually
satisfied only at a single frequency. For broadband excitation
(∼300 fs laser pulse [28]), the dual drive can selectively excite
the desired mode and in general have larger bandwidth.

Case 2: If the MIMOSA is excited by a z-polarized plane
wave propagating in the −x direction, i.e., Einc�r, t� �
E0 exp�jωt � jk0x�ẑ, the field is a mirror image of the field
in Case 1 due to the mirror-x symmetry of MIMOSA:

e2�x� � Mx �e1�−x��
� a−Mx �ep�−x; −kx�� exp�−jkxx�
� a�Mx �ep�−x; kx�� exp�jkxx�, (A15)

where Mx represents a mirror-x operation on the vector such
that

Mx

" ex
ey
ez

#
�

" −ex
ey
ez

#
: (A16)

Similar to Case 1, An
c and An

s in Case 2 are

An
c,2 � ac−exp�−jkxxn� � ac� exp�jkxxn�, (A17)

An
s,2 � −as−exp�−jkxxn� − as�exp�jkxxn�: (A18)

Comparing Eqs. (A12), (A13), (A17), and (A18), and recalling
that xn � �n − �N � 1�∕2�Lx � −xN�1−n, we find that

An
c,2 � AN�1−n

c,1 , An
s,2 � −AN�1−n

s,1 : (A19)

Case 3: If the MIMOSA is excited by two counterpropagat-
ing plane waves in the x direction with equal amplitudes and
relative phase θ, i.e., Einc�r, t� � E0�exp�−jk0x� � exp�jθ�
exp�jk0x�� exp�jωt�ẑ, the field in this case is a sum of the field
in Case 1 and Case 2 with relative phase θ:

e3�x� � e1�x� � exp�jθ�e2�x�: (A20)

Therefore, the amplitudes of the cosh and sinh components in
the nth electron channel are

An
c,3 � An

c,1 � exp�jθ�An
c,2

� ac��exp�−jkxxn� � exp�jθ� exp�jkxxn��
� ac−�exp�jkxxn� � exp�jθ� exp�−jkxxn��, (A21)

An
s,3 � An

s,1 � exp�jθ�An
s,2

� as��exp�−jkxxn� − exp�jθ� exp�jkxxn��
� as−�exp�jkxxn� − exp�jθ� exp�−jkxxn��: (A22)

With symmetric excitation, i.e., θ � 0, the amplitudes of the
cosh and sinh components are

An
c,3 � 2�ac� � ac−� cos�kxxn�,

An
s,3 � −2j�as� − as−� sin�kxxn�: (A23)

From Eq. (A23), we observe that the channel-to-channel vari-
ance in the amplitudes of the cosh and sinh components is
minimized when kx is near zero. Therefore, to provide near-
identical force for electrons traveling in different channels,
the MIMOSA should operate near the Γ point (kx � 0).
When kx is near zero, either real if the excitation frequency
is within the band or purely imaginary if the excitation fre-
quency is within the band gap, the phases of An

c,3 are identical
for different channels. These are observed in the numerical
study. We emphasize that these properties are crucial to provide
near-identical acceleration for micro-bunched electrons with
the same entering time.

Similarly, with antisymmetric excitation, i.e., θ � π, the
amplitudes of cosh and sinh components in different electron
channels are
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An
c,3 � −2j�ac� − ac−� sin�kxxn�,

An
s,3 � 2�as� � as−� cos�kxxn�: (A24)

The amplitudes of sinh components also have the same phase
and small variation in magnitude for kx near zero.

Since the studied MIMOSA has mirror-x symmetry,
Eq. (A19) implies that An

c,3 (A
n
s,3) are symmetric (antisymmet-

ric) with respect to x � 0 under symmetric excitation, while
An
c,3 (An

s,3) are antisymmetric (symmetric) with respect to
x � 0 under antisymmetric excitation. These are consistent
with Eqs. (A23) and (A24).

We also find that a MIMOSA with high acceleration factor
may not have high deflection factor when the dual drive exci-
tation changes from symmetric to antisymmetric. From
Eqs. (A23) and (A24), it is obvious that the cosh component
amplitudes under symmetric excitation are not necessarily the
same as the sinh component amplitudes under antisymmetric
excitation. This observation is aligned with the analysis
in Ref. [42].

APPENDIX B: MIMOSA WITH LARGE NUMBER
OF ELECTRON CHANNELS

In this appendix, we discuss the figure of merits of MIMOSA
with large number of electron channels and the scaling rule of
its bandwidth. In Section 3, we demonstrate a MIMOSA with
three electron channels. Here we extend the number of electron
channels to 10 with all other parameters fixed. With symmetric
excitation and the proper electron phase to maximize the accel-
eration force, the longitudinal force distributions inside differ-
ent channels are shown in Fig. 12(a). With another electron
phase that maximizes the focusing force, the transverse force
distributions inside different channels are shown in Fig. 12(b).
The almost overlapping curves imply that the force distribu-
tions are almost identical from channel to channel. Indeed,
the amplitudes of cosh components in different channels differ
by less than 3%, and the amplitudes of cosh components domi-
nate over that of sinh components [Fig. 12(c)].

Nevertheless, with increasing number of channels, the band-
width of the MIMOSA decreases. From Fig. 12(d), we find
that the bandwidth decreases to 16.6 nm in the 10-channel
MIMOSA.

We study further the scaling coefficient in the relation be-
tween the matched pulse duration (τ) and the number of chan-
nels (N ), which is generally linear for large N :

τ � α1N � α2, (B1)

where the scaling coefficient α1 determines how fast the band-
width narrows as the number of channels increases. To achieve
broadband operation and large number of channels simultane-
ously, a small scaling coefficient is favorable. We find that this
scaling coefficient depends on the photonic crystal and is re-
lated to the band structure of the underlying photonic crystal
along the ΓX direction; specifically, it is related to the band
containing the acceleration mode and the band gap adjacent
to the acceleration mode. When the band is close to a flat band,
i.e., the band has small curvature near the Γ point, a small
change in the excitation frequency leads to large change in
kx of the mode, which results in narrow bandwidth. On the
other hand, when the excitation frequency is within the band
gap near the acceleration mode, the field decays exponentially
inside the MIMOSA from the outmost pillars, which increases
the field variation from channel to channel. Since the penetra-
tion depth is positively correlated to the band curvature near
the Γ point [45], a large band curvature, or even a linear

Fig. 12. MIMOSA with 10 electron channels. (a) and (b) show the
longitudinal and transverse forces in different channels. The ampli-
tudes of cosh and sinh components in different channels are shown
in (c), and their wavelength dependence is shown in (d). Different
colors indicate different channels. Due to the mirror-x symmetry,
channels above x � 0 are omitted in (d).

Fig. 13. MIMOSA with high acceleration factor but small band-
width. (a) The band structure of the photonic crystal (L � 1 μm,
a � 0.32 μm, b � 0.82 μm, d � 0.2 μm). The red arrow points
to the acceleration mode. The band containing the acceleration mode
is highlighted in green. (b) The field distribution of the acceleration
mode. (c) The pulse duration of the transform-limited Gaussian pulse,
whose bandwidth matches the bandwidth of the MIMOSA, as a func-
tion of the number of channels.
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dispersion relation, near the Γ point is favorable. Therefore, to
achieve small scaling coefficient α1, the underlying photonic
crystal should have large band curvature, ideally a linear
dispersion relation, near the Γ point. We take this design rule
into account when we optimize the geometric parameters of the
MIMOSA. As shown in Figs. 1(c) and 5(a) of the main text, the
bands near the acceleration mode [red arrow in Fig. 1(c)] and
the deflection mode [blue arrow in Fig. 5(a)] have a nearly lin-
ear dispersion relation.

To emphasize the importance of small bandwidth scaling
factor in a MIMOSA, we show a counter-example of a
MIMOSA with high acceleration factor but narrow bandwidth
due to the small band curvature. As shown in Fig. 13(a), the
photonic crystal with rectangle pillars (L � 1 μm, a �
0.32 μm, b � 0.82 μm, d � 0.2 μm) supports an acceleration
mode with normalized frequency around 0.5. From the field
distribution of the acceleration mode [Fig. 13(b)], the acceler-
ation factor is as high as 0.53. However, the band containing
the acceleration mode has small curvature as highlighted in
green in Fig. 13(a). As a result, the bandwidth decreases fast
as the number of channels increases. Figure 13(c) shows the
pulse duration of the transform-limited Gaussian pulse with
the same bandwidth as the MIMOSA. We estimate the scaling
is τ�fs� � 279 × N − 819, where the scaling coefficient α1 �
279 is much larger than that of the MIMOSA shown in
Fig. 1 (α1 � 40.8).

APPENDIX C. REQUIREMENTS ON ELECTRON
BUNCHES FOR MEDICAL APPLICATIONS

The linear accelerators used for medical therapy usually operate
on a dose rate around 1 Gy ·min−1 [46]. If we assume a typical
phantom mass of 1 kg and a typical electron beam final energy
of 6 MeV, the required average beam current is 2.8 nA.
Supposing the femtosecond laser operates at 50 MHz repetition
rate with 250 fs pulse duration [28,29], the corresponding
number of electrons per laser pulse is 3.5 × 102. Recent
progress in laser-driven nanotip electron sources has demon-
strated this required number of electrons per laser pulse, with
below nm · rad emittance [47]. From the bandwidth analysis in
Appendix B (Fig. 5), we find that a seven-channel MIMOSA
matches this pulse duration. If these electrons are distributed
over the seven channels and 37 micro-bunches, which fall
within the pulse duration of 250 fs, the average number of elec-
trons per micro-bunch per channel is only 1.3.

To summarize, for medical applications, the required num-
ber of electrons per laser pulse is low due to the high laser rep-
etition rate. With the multichannel DLA architecture and the
micro-bunching technology, the required number of electrons
per micro-bunch per channel is around 1.

APPENDIX D. BEAM LOADING PROPERTIES OF
THE MIMOSA

In this appendix, we provide a brief discussion of the short-
range wakefield effects and beam loading properties of the
MIMOSA, although a comprehensive study of the wakefields
in such multichannel DLAs is beyond the scope of this study

due to the intrinsic complexity of Cheronkov radiation in pho-
tonic crystals [48].

To study the beam loading properties of the MIMOSA,
we follow the discussion presented in Ref. [5]. Suppose
the unloaded gradient is G0; the loaded gradient is
GL � G0 − NqkW − qkH , where N is the number of electron
channels, q is the charge per channel per micro-bunch, kW rep-
resents the loss factor due to the particle’s wakefield that over-
laps with the excitation laser field, and kH represents the
nonoverlapping component of the wakefields such as the
broadband Cherenkov radiation. We assume that the micro-
bunches in different channels are in phase. Thus, their wake-
field components that overlap with the laser field will add up
coherently, which gives rise to the multiple of N in the expres-
sion of the loaded gradient. Although the Cherenkov radiation
from the in-phase micro-bunches is also coherent at a particular
frequency, the average effect over the broadband resembles an
incoherent sum, due to their constructive interference over
some frequencies and destructive interference over some other
frequencies.

From Refs. [5,38], we find that kW � cZC
4λ2β with ZC being

the characteristic impedance of the MIMOSA, and
kH � c

λ2 ZH , where ZH is the broadband wakefield impedance.

The characteristic impedance is ZC � ξ2 βλ
D Z 0, where

Z 0 �
ffiffiffiffiffiffiffiffiffiffiffi
μ0∕ϵ0

p
is the impedance of vacuum; ξ is the ratio of

the unloaded gradient and the incident electric field, i.e.,
ξ � G0∕E0 ∼ 0.5; and D is the extension in the out-of-plane
dimension. The broadband wakefield impedance depends on
the Cherenkov radiation in the MIMOSA structure, which
is intrinsically complicated and not discussed in detail in this
study. The wakefield impedance can be approximated by a wide
bunch, with extension D in the out-of-plane direction, travel-
ing between two gratings with separation 2d . The impedance is
approximately ZH � λ2

2πR2
eff

Z 0 and Reff �
ffiffiffiffiffiffiffi
dD

p
. Using the

properties of the MIMOSA design presented in Section 3
and assuming D � λ � 2 μm, the characteristic impedance
is ZC � 47Ω and the broadband wakefield impedance
is ZH � 600Ω.

For the seven-channel MIMOSA operating for medical ap-
plications discussed in Appendix C, the reduction in accelera-
tion gradient due to wakefields is 12 kV/m, much smaller than
the unloaded gradient (∼0.25 GV∕m). This observation con-
firms our anticipation that the wakefield effects are small in
MIMOSAs for medical applications.

We also provide an estimation of the energy efficiency of
MIMOSA and the optimal charge per bunch that achieves
the maximal energy efficiency. The energy efficiency is
η � NqGLL

PLτpulse
, where L is the periodicity along the propagation

direction, PL � LDE2
0∕Z 0 is the laser power incident on

one period from two sides, and τpulse is the pulse duration.
Consistent with discussions in Appendix C, we assume the

laser pulse duration is τpulse � 250 fs, and we take N � 7 to
match this pulse duration. For the MIMOSA operating for
medical applications, q � 1.3e and the energy efficiency is
1.1 × 10−6. Even when a train of 37 bunches is fed in the laser
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pulse, the energy efficiency is only 4.1 × 10−5. Such low energy
efficiency suggests the demand for recycling the laser pulses.

Nevertheless, the energy efficiency of MIMOSA can be im-
proved significantly with a proper choice of charge per micro-
bunch. To maximize the efficiency, the optimal charge is
qopt � G0

2�NkW�kH � [5,39] and the optimal efficiency is
ηopt � 1

1�4βZH∕�NZC �
τc

τpulse
, where τc is the duration of an optical

cycle. With the aforementioned impedance of the MIMOSA
design, we find that qopt � 2.18 fC, which corresponds to
1.36 × 104 electrons per micro-bunch, and ηopt � 0.58%.
Furthermore, if a train of micro-bunches is fed into the
MIMOSA structure, the efficiency can be increased further.
For a train of 37 bunches, which falls within the pulse duration
of 250 fs, the efficiency becomes 21%, under the approxima-
tion that the long-range interaction of the wakefields is negli-
gible due to the low-resonance nature of the MIMOSA.

APPENDIX E. SPACE-CHARGE EFFECTS IN THE
MIMOSA

In this appendix, we discuss the space-charge effects of an atto-
second electron bunch injected into the MIMOSA and the re-
quired external focusing field to avoid emittance growing.

An ideal scenario for beam coupling to the MIMOSA archi-
tecture is a line of point emitters spaced at the channel sepa-
ration triggered in unison by a single laser pulse. Such a linear
array of electron sources can be produced using nanotip field
emitters etched in silicon as discussed in Ref. [49]. Consistent
with recent DLA experiments [34,42], the three-channel
MIMOSA has 15 periods in the electron propagation direction,
whose geometric parameters are given in Section 3. We use the
particle tracking code General Particle Tracer (GPT) to simu-
late the normalized transverse emittance of a short electron
bunch under the influence of space-charge effects in this sce-
nario. For the tracking simulation, we assume that each channel
has an incident micro-bunch of 500 attoseconds FWHM du-
ration, consistent with recently demonstrated optically
bunched beams [29,50,51]. A transverse normalized emittance
of 0.1 nm is assumed with a bunch charge of 2 fC, consistent
with the estimated optimal bunch charge for efficient beam
loading calculated in Appendix D.

Due to a combination of space-charge repulsion, emittance
pressure, and transverse defocusing in the narrow accelerating
channel, strong transverse focusing forces are required for beam
confinement. The normalized focusing force K may be inter-
preted as the linear focusing term appearing in a z-dependent
paraxial ray equation of the form x 0 0�z� � −K 2x�z�. We note
that the minimal focusing strength for optimal emittance pres-
ervation and near 100% particle transport in Fig. 14
(K 2 � 4 × 1012 m−2) is of the order of magnitude estimated
in Ref. [4] as being required for focusing of subrelativistic elec-
tron beams in DLA structures. For the present tracking simu-
lation we use a solenoidal magnetic field B oriented in the z
direction, which provides a transverse focusing force K �
eB∕2mcβγ. The minimum emittance point in Fig. 14(a) cor-
responds to a field of B � 3.8 kT, which is impractically large.
However, compatible laser-driven focusing techniques capable
of forces of this magnitude, which have been proposed in

Refs. [19,20] and recently demonstrated in Ref. [29], can be
readily adapted to the MIMOSA architecture. However, a full
implementation of such a ponderomotive focusing scheme lies
beyond the scope of the present paper. Although these results
were calculated for all three channels, in Fig. 14 we show only
the result for the center channel of the MIMOSA device. Since
the electromagnetic design successfully equalizes the accelerat-
ing fields in the channels, the results for the other two channels
are nearly identical, and displaying all three on one plot would
provide no additional information. Also of note is that the un-
compensated emittance growth (at K � 0) in Fig. 14(a) is sig-
nificantly larger in the x coordinate due to the fact that the
dominant transverse defocusing is in this dimension as pre-
dicted by Eq. (4) and Fig. 4.

APPENDIX F. ELECTRON TRANSMISSION OF
THE DEFLECTOR

In this appendix, we study the electron beam dynamics in the
MIMOSA functioning as a deflector. The three-channel deflec-
tor has 20 periods in the electron propagation direction and
geometric parameters mentioned in Section 4. We investigate

Fig. 14. Particle tracking simulations of 500 attoseconds FWHM
bunch with initial emittance of 0.1 nm and charge of 2 fC showing
(a) final emittance after propagating through the 15 μm MIMOSA
structure and (b) corresponding fraction of transmitted particles as
functions of externally applied focusing field K. Only the center chan-
nel of the MIMOSA is shown since the results for the three channels
are nearly identical.

Fig. 15. Particle tracking simulation of (a) centroid angular deflec-
tion hx 0i and hy 0i and (b) fraction of transmitted particles for a 20 μm
long three-channel MIMOSA operating in deflection mode. The ini-
tial beam parameters are the same as for the acceleration case consid-
ered in Fig. 14, with space charge and external focusing turned off.
Deviation of the deflection curve from a linear relationship is due
to truncation of particles by the aperture of the channel at higher in-
cident field.
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the deflection angle and particle transmission for each channel
using GPT, where the simulation parameters are the same as
those for Fig. 14. The results in Fig. 15 confirm that the beam
dynamics in three channels are almost identical. The deflection
angle scales linearly with the incident field until a portion of the
particles are truncated by the channel aperture. Moreover, the
deflection angle and transmission, under a specific incident
field, can be optimized by tuning the length of the deflector.
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