• Acta Optica Sinica
  • Vol. 27, Issue 11, 2091 (2007)
[in Chinese]1、2、*, [in Chinese]2, [in Chinese]2, [in Chinese]1、2, and [in Chinese]2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article Set citation alerts
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Inherent Spatial Resolution of Mercuric Iodide by Monte Carlo Simulation[J]. Acta Optica Sinica, 2007, 27(11): 2091 Copy Citation Text show less
    References

    [1] T. J. Davis, D. Gao, T. E. Gureyev et al.. Phase-contrast imaging of weakly absorbing materials using hard X-rays[J]. Nature, 1995, 373(6515): 595~598

    [2] Atsushi Momose, Tohoru Takeda, Yyji Itai et al.. Phase-contrast X-ray computed tomography for observing biological soft tissues[J]. Nature Med., 1996, 2: 473~475

    [3] Franz Pfeiffer, Timm Weitkamp, Oliver Bunk et al.. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics, 2006, 2: 258~261

    [4] Neal E. Hartsough, Jan S. Iwanczyk, Bradley E. Patt et.al.. Imaging performance of mercuric iodide polycrystalline films[J]. IEEE Transactions on Nuclear Science, 2004, 51(4):1812~1816

    [5] Robert A. Street, Marcelo Mulato, Steve E. Ready et al.. High resolution X-ray image sensors based on HgI2[C]. Proc. SPIE, 2000, 4142: 189~196

    [6] G. Zentai, M. Schieber, L. Partain et al.. Large area mercuric iodide and lead iodide X-ray detectors for medical and non-destructive industrial imaging[J]. J. Crystal Growth, 2005, 275: 1327~1331

    [7] W. Que, J. A. Rowlands. X-ray imaging using amorphous selenium: Inherent spatial resolution[J]. Med. Phys., 1995, 22(4): 365~374

    [8] T. Sakellaris, G. Spyrou, G. Tzanakos et al.. Monte Carlo simulation of primary electron production inside an a-selenium detector for X-ray mammography: physics[J]. Phys. Med. Biol., 2005, 50: 3717~3738

    [9] M. Hoheisela, J. Gierschb, P. Bernhardta. Intrinsic spatial resolution of semiconductor X-ray detectors: a simulation study[J]. Nuclear Instruments and Methods in Physics Research A, 2004, 531: 75~81

    [10] G. Rossi, M. Sanchez del Rio, P. Fajardo et al.. Monte Carlo simulation of the X-ray response of a germanium microstrip detector with energy and position resolution[J]. Nuclear Instruments and Methods in Physics Research A, 1999, 432: 130~137

    [11] I. Kawrakow, D. W. O. Rogers. The EGSnrc code system: Monte Carlo simulation of electron and photon transport[R]. Technical Report PIRS-701, National Research Council of Canada, Ottawa, 2000

    [12] I. Kawrakow. Accurate condensed history Monte Carlo simulation of electron transport. I: EGSnrc, the new EGS4 version[J]. Med. Phys., 2000, 27(3): 485~498

    [13] M. Hoheisela, A. Korn, J. Giersch. Influence of backscattering on the spatial resolution of semiconductor X-ray detectors[J]. Nuclear Instruments and Methods in Physics Research A, 2005, 546: 252~257

    [14] Alexander Korn, Juergen Gierscha, Martin Hoheisel. Simulation of internal backscatter effects on MTF and SNR of pixelated photon-counting detectors[C]. Proc. SPIE, 2005, 5745: 292~298

    [20] B. Kirk, A. Haghigat, R. Jeraj et al.. SU-FF-T-378: Radiation transport software for medical physics studies[J]. Med. Phys., 2006, 33(6): 2132~2133

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Inherent Spatial Resolution of Mercuric Iodide by Monte Carlo Simulation[J]. Acta Optica Sinica, 2007, 27(11): 2091
    Download Citation