• Photonics Research
  • Vol. 7, Issue 6, 642 (2019)
Hao Hu1, Liangliang Liu1、2、3, Xiao Hu1, Dongjue Liu1, and Dongliang Gao4、5
Author Affiliations
  • 1School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore, Singapore
  • 2Research Center of Applied Electromagnetics, School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • 3e-mail: llliu@ntu.edu.sg
  • 4School of Physical Science and Technology, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
  • 5e-mail: dlgao@suda.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.000642 Cite this Article Set citation alerts
    Hao Hu, Liangliang Liu, Xiao Hu, Dongjue Liu, Dongliang Gao. Routing emission with a multi-channel nonreciprocal waveguide[J]. Photonics Research, 2019, 7(6): 642 Copy Citation Text show less
    References

    [1] W. Y. Yin, W. Wan. Radiation from a dipole in the presence of a grounded arbitrary magnetized chiroferrite slab. Int. J. Infrared Millim. Waves, 15, 1263-1274(1994).

    [2] P. S. Epstein. Theory of wave propagation in a gyromagnetic medium. Rev. Mod. Phys., 28, 3-17(1956).

    [3] C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, T. S. Yeo. Routes to left-handed materials by magnetoelectric couplings. Phys. Rev. B, 75, 245214(2007).

    [4] E. Cojocaru. Modes in dielectric or ferrite gyrotropic slab and circular waveguides, longitudinally magnetized, with open and completely or partially filled wall. J. Opt. Soc. Am. B, 27, 1965-1977(2010).

    [5] F. Fan, S. Chen, X. H. Wang, S. J. Chang. Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens. Opt. Express, 21, 8614-8621(2013).

    [6] K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, R. W. Boyd. Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering. Science, 356, 1260-1264(2017).

    [7] X. Lin, Z. J. Wang, F. Gao, B. L. Zhang, H. S. Chen. Atomically thin nonreciprocal optical isolation. Sci. Rep., 4, 4190(2014).

    [8] T. S. Qiu, J. Wang, Y. F. Li, S. B. Qu. Circulator based on spoof surface plasmon polaritons. IEEE Antennas Wireless Propag. Lett., 16, 821-824(2017).

    [9] Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljacic. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461, 772-775(2009).

    [10] C. He, X. C. Sun, X. P. Liu, M. H. Lu, Y. Chen, L. Feng, Y. F. Chen. Photonic topological insulator with broken time-reversal symmetry. Proc. Natl. Acad. Sci. USA, 113, 4924-4928(2016).

    [11] F. R. Prudencio, M. G. Silveirinha. Asymmetric Cherenkov emission in a topological plasmonic waveguide. Phys. Rev. B, 98, 115136(2018).

    [12] S. A. Gangaraj, G. W. Hanson, M. G. Silveirinha, K. Shastri, M. Antezza, F. Monticone. Truly unidirectional excitation and propagation of diffractionless surface plasmon-polaritons(2018).

    [13] H. Hu, J. L. Zhang, S. A. Maier, Y. Luo. Enhancing third-harmonic generation with spatial nonlocality. ACS Photon., 5, 592-598(2018).

    [14] S. Hou, A. Xie, Z. Xie, L. Y. M. Tobing, J. Zhou, L. Tjahjana, J. Yu, C. Hettiarachchi, D. Zhang, C. Dang, E. H. T. Teo, M. D. Birowosuto, H. Wang. Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals. ACS Photon.(2019).

    [15] J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, T. J. Cui. Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure. Sci. Rep., 5, 8165(2015).

    [16] L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, Y. Luo. Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide. IEEE Trans. Microwave Theory Tech., 65, 2008-2018(2017).

    [17] Z. F. Yu, G. Veronis, Z. Wang, S. H. Fan. One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Phys. Rev. Lett., 100, 023902(2008).

    [18] Y. Kurokawa, H. T. Miyazaki. Metal-insulator-metal plasmon nanocavities: analysis of optical properties. Phys. Rev. B, 75, 035411(2007).

    [19] S. R. K. Rodriguez. Classical and quantum distinctions between weak and strong coupling. Eur. J. Phys., 37, 025802(2016).

    [20] S. F. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. H. Cui, M. L. Brongersma, W. S. Cai. Backward phase-matching for nonlinear optical generation in negative-index materials. Nat. Mater., 14, 807-811(2015).

    [21] A. K. Popov, I. S. Nefedov, S. A. Myslivets. Hyperbolic carbon nanoforest for phase matching of ordinary and backward electromagnetic waves: second harmonic generation. ACS Photon., 4, 1240-1244(2017).

    [22] G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, S. Zhang. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation. Nano Lett., 17, 7974-7979(2017).

    [23] L. L. Liu, L. Wu, J. J. Zhang, Z. Li, B. L. Zhang, Y. Luo. Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials. Adv. Sci., 5, 1800661(2018).

    [24] X. P. Hu, P. Xu, S. N. Zhu. Engineered quasi-phase-matching for laser techniques. Photon. Res., 1, 171-185(2013).

    [25] A. Eroglu. Wave Propagation and Radiation in Gyrotropic and Anisotropic Media, 31(2010).

    [26] J. X. Huang, H. Hu, Z. W. Wang, W. Y. Li, J. Cang, J. Q. Shen, H. Ye. Analysis of light-emission enhancement of low-efficiency quantum dots by plasmonic nano-particle. Opt. Express, 24, 8555-8573(2016).

    [27] J. Tao, Q. J. Wang, J. J. Zhang, Y. Luo. Reverse surface-polariton Cherenkov radiation. Sci. Rep., 6, 30704(2016).

    [28] L. Carletti, A. Locatelli, O. Stepanenko, G. Leo, C. De Angelis. Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas. Opt. Express, 23, 26544-26550(2015).

    [29] M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, M. Finazzi. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol., 10, 412-417(2015).

    [30] S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier. Broadband terahertz plasmonic response of touching InSb disks. Adv. Mater., 24, Op226-Op230(2012).

    [31] J. R. Maack, N. A. Mortensen, M. Wubs. Size-dependent nonlocal effects in plasmonic semiconductor particles. Europhys. Lett., 119, 17003(2017).

    [32] M. Cazzanelli, F. Bianco, M. Ghulinyan, G. Pucker, D. Modotto, S. Wabnitz, F. M. Pigozzo, S. Ossicini, E. Degoli, E. Luppi, V. Veniard, L. Pavesi. Second-order nonlinear silicon photonics. SPIE Newsroom(2012).

    [33] L. Marrucci. Spin gives direction. Nat. Phys., 11, 9-10(2015).

    [34] F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, A. V. Zayats. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science, 340, 328-330(2013).

    [35] D. Gao, R. Shi, A. E. Miroshnichenko, L. Gao. Enhanced spin Hall effect of light in spheres with dual symmetry. Laser Photon. Rev., 12, 1800130(2018).

    [36] R. Shi, D. L. Gao, H. Hu, Y. Q. Wang, L. Gao. Enhanced broadband spin Hall effects by core-shell nanoparticles. Opt. Express, 27, 4808-4817(2019).

    CLP Journals

    [1] Jian Chen, Chenhao Wan, Qiwen Zhan. Engineering photonic angular momentum with structured light: a review[J]. Advanced Photonics, 2021, 3(6): 064001

    Hao Hu, Liangliang Liu, Xiao Hu, Dongjue Liu, Dongliang Gao. Routing emission with a multi-channel nonreciprocal waveguide[J]. Photonics Research, 2019, 7(6): 642
    Download Citation