• Opto-Electronic Advances
  • Vol. 3, Issue 4, 190031-1 (2020)
Haizhou Huang1, Jinhui Li1, Jing Deng1,2, Yan Ge1..., Huagang Liu3, Jianhong Huang1, Wen Weng1,2 and Wenxiong Lin1,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
  • show less
    DOI: 10.29026/oea.2020.190031 Cite this Article
    Haizhou Huang, Jinhui Li, Jing Deng, Yan Ge, Huagang Liu, Jianhong Huang, Wen Weng, Wenxiong Lin. Passively Q-switched Tm/Ho composite laser[J]. Opto-Electronic Advances, 2020, 3(4): 190031-1 Copy Citation Text show less
    References

    [1] S Hein, R Petzold, M Schoenthaler, U Wetterauer, A Miernik. Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model. World J Urol, 36, 1469-1475(2018).

    [2] J W Zhang, Mak K Fai, N Nagl, M Seidel, D Bauer et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1. Light Sci Appl, 7, 17180(2018).

    [3] K Mizutani, S Ishii, M Aoki, H Iwai, R Otsuka et al. 2 μm Doppler wind lidar with a Tm:fiber-laser-pumped Ho:YLF laser. Opt Lett, 43, 202-205(2018).

    [4] A Schliesser, N Picque, T W Hansch. Mid-infrared frequency combs. Nat Photonics, 6, 440-449(2012).

    [5] T Kanai, P Malevich, S S Kangaparambil, K Ishida, M Mizui et al. Parametric amplification of 100 fs mid-infrared pulses in ZnGeP2 driven by a Ho:YAG chirped-pulse amplifier. Opt Lett, 42, 683-686(2017).

    [6] A Hemming, J Richards, A Davidson, N Carmody, S Bennetts et al. 99 W mid-IR operation of a ZGP OPO at 25% duty cycle. Opt(2013).

    [7] Nonlinear Optics 2017 (Optical Society of America, 2017); http://doi.org/10.1364/NLO.2017.NTu2A.1.

    [8] 2 OPO. In Advanced Solid State Lasers 1998 (Optical Society of America, 1998); http://doi.org/10.1364/ASSL.1998.FC1.

    [9] C Bollig, R A Hayward, W A Clarkson, D C Hanna. 2-W Ho:YAG laser intracavity pumped by a diode-pumped Tm:YAG laser. Opt Lett, 23, 1757-1759(1998).

    [10] Advanced Solid State Lasers 1998 (Optical Society of America, 1998); http://doi.org/10.1364/ASSL.1998.ML4.

    [11] H Chen, D Y Shen, J Zhang, H Yang, D Y Tang et al. In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm. Opt Lett, 36, 1575-1577(2011).

    [12] Y X Zhang, C Q Gao, Q Wang, Q X Na, M Zhang et al. Single-frequency, injection-seeded Q-switched Ho:YAG ceramic laser pumped by a 1.91 μm fiber-coupled LD. Opt Express, 24, 27805-27811(2016).

    [13] S Lamrini, P Koopmann, M Schäfer, K Scholle, P Fuhrberg. Directly diode-pumped high-energy Ho:YAG oscillator. Opt Lett, 37, 515-517(2012).

    [14] M Chernysheva, C B Mou, R Arif, M AlAraimi, M Rümmeli et al. High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber. Sci Rep, 6, 24220(2016).

    [15] H T Huang, M Li, P Liu, L Jin, H Wang et al. Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 μm solid-state laser. Opt Lett, 41, 2700-2703(2016).

    [16] T Zhao, Y Wang, H Chen, D Y Shen. Graphene passively Q-switched Ho:YAG ceramic laser. Appl Phys B, 116, 947-950(2014).

    [17] X Liu, K Yang, S Zhao, T Li, W Qiao et al. High-power passively Q-switched 2 μm all-solid-state laser based on a Bi2Te3 saturable absorber. Photonics Res, 5, 461-466(2017).

    [18] B Z Yan, B T Zhang, J L He, H K Nie, G R Li et al. Ternary chalcogenide Ta2NiS5 as a saturable absorber for a 1.9 μm passively Q-switched bulk laser. Opt Lett, 44, 451-454(2019).

    [19] B Cole, L Goldberg. Highly efficient passively Q-switched Tm:YAP laser using a Cr:ZnS saturable absorber. Opt Lett, 42, 2259-2262(2017).

    [20] J L Lan, B Xu, Y Z Zhang, H Y Xu, Z P Cai et al. Tunable and passively Q-switched laser operation of Tm:CaYAlO4 between 1848 nm and 1876 nm. Opt Laser Technol, 109, 33-38(2019).

    [21] L J Li, X N Yang, L Zhou, W Q Xie, Y L Wang et al. Active/passive Q-switching operation of 2 μm Tm, Ho:YAP laser with an acousto-optical Q-switch/MoS2 saturable absorber mirror. Photonics Res, 6, 614-619(2018).

    [22] M Schellhorn, A Hirth, C Kieleck. Ho:YAG laser intracavity pumped by a diode-pumped Tm:YLF laser. Opt Lett, 28, 1933-1935(2003).

    [23] X F Yang, H T Huang, D Y Shen, H Y Zhu, D Y Tang. 2.1 μm Ho:LuAG ceramic laser intracavity pumped by a diode-pumped Tm:YAG laser. Chin Opt Lett, 12, 121405(2014).

    [24] H Z Huang, J H Huang, Y Ge, H Zheng, W Weng et al. 2.1 μm composite Tm/Ho:YAG laser. Opt Lett, 43, 1271-1274(2018).

    [25] H Z Huang, J Deng, Y Ge, J H Li, J H Huang et al. Direct 800 nm diode-pumped Holmium laser with broad pump wavelength range and temperature adaptability. Opt Express, 27, 13492-13502(2019).

    [26] Y J Huang, Y P Huang, P Y Chiang, H C Liang, K W Su et al. High-power passively Q-switched Nd:YVO4 UV laser at 355 nm. Appl Phys B, 106, 893-898(2012).

    [27] P H Tuan, C C Chang, F L Chang, C Y Lee, C L Sung et al. Modelling end-pumped passively Q-switched Nd-doped crystal lasers: manifestation by a Nd:YVO4/Cr4+:YAG system with a concave-convex resonator. Opt Express, 25, 1710-1722(2017).

    [28] Y T Chang, Y P Huang, K W Su, Y F Chen. Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/24I11/2 and 4F3/24I13/2 transitions. Opt Express, 16, 21155-21160(2008).

    [29] 2+: ZnSe. In Advanced Solid State Lasers 2000 (Optical Society of America, 2000); http://doi.org/10.1364/ASSL.2000.MC7.

    [30] N P Barnes, F Amzajerdian, D J Reichle, W A Carrion, G E Busch et al. Diode pumped Ho:YAG and Ho:LuAG lasers, Q-switching and second harmonic generation. Appl Phys B, 103, 57-66(2011).

    Haizhou Huang, Jinhui Li, Jing Deng, Yan Ge, Huagang Liu, Jianhong Huang, Wen Weng, Wenxiong Lin. Passively Q-switched Tm/Ho composite laser[J]. Opto-Electronic Advances, 2020, 3(4): 190031-1
    Download Citation