• Photonic Sensors
  • Vol. 14, Issue 1, 240127 (2024)
Muwen LIANG1、2, Yabin ZHAO1, Yaping LUO1、*, Bin DU2, Wei HU2, Bing LIU2, Xihui MU2, and and Zhaoyang TONG2
Author Affiliations
  • 1Department of Investigation, People’s Public Security University of China, Beijing 100038, China
  • 2State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
  • show less
    DOI: 10.1007/s13320-024-0699-z Cite this Article
    Muwen LIANG, Yabin ZHAO, Yaping LUO, Bin DU, Wei HU, Bing LIU, Xihui MU, and Zhaoyang TONG. Eu-MOF-Based Fluorescent Ratiometric Sensor by Detecting 3,4,5-Trihydroxybenzoic for Fingerprint Visualization on Porous Objects[J]. Photonic Sensors, 2024, 14(1): 240127 Copy Citation Text show less
    References

    [1] B. T. Ulery, R. A. Hicklin, G. I. Kiebuzinski, M. A. Roberts, and J. Buscaglia, “Understanding the sufficiency of information for latent fingerprint value determinations,” Forensic Science International, 2013, 230(1–3): 99–106.

    [2] A. de Ronde, B. Kokshoorn, C. J. de Poot, and M. de Puit, “The evaluation of fingermarks given activity level propositions,” Forensic Science International, 2019, 302: 109904.

    [3] K. J. Sheridan, E. Saltupyte, R. Palmer, and M. D. Gallidabino, “A study on contactless airborne transfer of textile fibres between different garments in small compact semi-enclosed spaces,” Forensic Science International, 2020, 315: 110432.

    [4] S. Bennett, C. P. Roux, and J. Robertson, “The significance of fibre transfer and persistence - a case study,” Australian Journal of Forensic Sciences, 2010, 42(3): 221–228.

    [5] R. Palmer, K. Sheridan, J. Puckett, N. Richardson, and W. Lo, “An investigation into secondary transfer - the transfer of textile fibres to seats,” Forensic Science International, 2017, 278: 334–337.

    [6] M. Calderón-Santiago, F. Priego-Capote, B. Jurado-Gámez, and M. D. Luque de Castro, “Optimization study for metabolomics analysis of human sweat by liquid chromatography-tandem mass spectrometry in high resolution mode,” Journal of Chromatography A, 2014, 1333: 70–78.

    [7] J. Iglesias, I. Medina, M. Pazos. R. Watson, V. R. Preedy, and S. Zibadi, “Polyphenols in Human Health and Disease,” San Diego: Academic Press, 2014: 323–338.

    [8] T. D. James, K. R. A. S. Sandanayake, and S. Shinkai, “Saccharide sensing with molecular receptors based on boronic acid,” Angewandte Chemie International Edition in English, 1996, 35(17): 1910–1922.

    [9] S. Meng, G. Li, P. Wang, M. He, X. Sun, and Z. Li, “Rare earth-based MOFs for photo/electrocatalysis,” Materials Chemistry Frontiers, 2023, 7(5): 806–827.

    [10] L. D. Carlos, R. A. S. Ferreira, V. de Z. Bermudez, and S. J. L. Ribeiro, “Lanthanide-containing lightemitting organic-inorganic hybrids: a bet on the future,” Advanced Materials, 2009, 21(5): 509–534.

    [11] P. P. Lima, F. A. Almeida Paz, R. A. S. Ferreira, V. de Zea Bermudez, and L. D. Carlos, “Ligand-assisted rational design and supramolecular tectonics toward highly luminescent Eu3+-containing organicinorganic hybrids,” Chemistry of Materials, 2009, 21(21): 5099–5111.

    [12] A. A. Ansari, J. P. Labis, and A. Khan, “Facile synthesized NaGdF4:Yb,Er peanut‐shaped, highly biocompatible, colloidal upconversion nanospheres,” Luminescence, 2022, 37(7): 1048–1056.

    [13] D. Yang, J. Xu, G. Yang, Y. Zhou, H. Ji, H. Bi, et al., “Metal-organic frameworks join hands to create an anti-cancer nanoplatform based on 808 nm light driving up-conversion nanoparticles,” Chemical Engineering Journal, 2018, 344: 363–374.

    [14] L. Zhao, X. Song, X. Ren, H. Wang, D. Fan, D. Wu, et al., “Ultrasensitive near-infrared electrochemiluminescence biosensor derived from Eu-MOF with antenna effect and high efficiency catalysis of specific CoS2 hollow triple shelled nanoboxes for procalcitonin,” Biosensors and Bioelectronics, 2021, 191: 113409.

    [15] L. Song, J. Xiao, R. Cui, X. Wang, F. Tian, and Z. Liu, “Eu3+ doped bismuth metal-organic frameworks with ultrahigh fluorescence quantum yield and act as ratiometric turn-on sensor for histidine detection,” Sensors and Actuators B: Chemical, 2021, 336: 129753.

    [16] J. Wu, Y. Li, B. Song, C. Zhang, Q. Wang, X. Gao, et al., “Microstructured optical fiber based on surface plasmon resonance for dual-optofluidic-channel sensing,” Plasmonics, 2022, 17(5): 1965–1971.

    [17] S. Ben Zakour and H. Taleb, “Shift endpoint trace selection algorithm and wavelet analysis to detect the endpoint using optical emission spectroscopy,” Photonic Sensors, 2016, 6: 158–168.

    [18] L. Pei, W. Zhang, S. Yang, K. Chen, X. Zhu, Y. Zhao, et al., “Nitrogen and sulfur Co-doped carbon dots as a turn-off fluorescence probe for the detection of cerium and iron,” Journal of Fluorescence, 2023, 33(3): 1147–1156.

    [19] X. Qiao, Y. Han, D. Tian, Z. Yang, J. Li, and S. Zhao, “MOF matrix doped with rare earth ions to realize ratiometric fluorescent sensing of 2,4,6-trinitrophenol: synthesis, characterization and performance,” Sensors and Actuators B: Chemical, 2019, 286: 1–8.

    [20] X. Jiang, H. Jin, Y. Sun, Z. Sun, and R. Gui, “Assembly of black phosphorus quantum dots-doped MOF and silver nanoclusters as a versatile enzyme-catalyzed biosensor for solution, flexible substrate and latent fingerprint visual detection of baicalin,” Biosensors and Bioelectronics, 2020, 152: 112012.

    [21] L. Sun, Y. Zhang, X. S. Lv, and H. D. Li, “A luminescent Eu-based MOFs material for the sensitive detection of nitro explosives and development of fingerprint,” Inorganic Chemistry Communications, 2023, 156: 111267.

    [22] Z. Sun, Y. Li, Y. Ma, and L. Li, “Dual-functional recyclable luminescent sensors based on 2D lanthanide-based metal-organic frameworks for highly sensitive detection of Fe3+ and 2,4-dinitrophenol,” Dyes and Pigments, 2017, 146: 263–271.

    [23] Y. Cui, F. Chen, and X. B. Yin, “A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose,” Biosensors and Bioelectronics, 2019, 135: 208–215.

    [24] L. R. Fitzpatrick and T. Woldemariam, “Comprehensive Medicinal Chemistry III,” Berlin: Elsevier, 2017: 495–510.

    [25] J. Li, Y. Yang, Y. Li, P. Zhao, J. Fei, and Y. Xie, “Detection of gallic acid in food using an ultra-sensitive electrochemical sensor based on glass carbon electrode modified by bimetal doped carbon nanopolyhedras,” Food Chemistry, 2023, 429: 136900.

    [26] M. Badea, F. di Modugno, L. Floroian, D. M. Tit, P. Restani, S. Bungau, et al., “Electrochemical strategies for gallic acid detection: potential for application in clinical, food or environmental analyses,” Science of the Total Environment, 2019, 672: 129–140.

    [27] A. Terbouche, S. Boulahia, S. Mecerli, C. Ait-Ramdane-Terbouche, H. Belkhalfa, D. Guerniche, et al., “A novel hybrid carbon materials-modified electrochemical sensor used for detection of gallic acid,” Measurement, 2022, 187: 110369.

    [28] G. Bart, D. Fischer, A. Samoylenko, A. Zhyvolozhnyi, P. Stehantsev, I. Miinalainen, et al., “Characterization of nucleic acids from extracellular vesicle-enriched human sweat,” BMC Genomics, 2021, 22(1): 425.

    [29] N. Kahkeshani, F. Farzaei, M. Fotouhi, S. S. Alavi, R. Bahramsoltani, R. Naseri, et al., “Pharmacological effects of gallic acid in health and diseases: a mechanistic review,” Iranian Journal of Basic Medical Sciences, 2019, 22(3): 225–237.

    [30] A. Serag, Z. Shakkour, A. M. Halboup, F. Kobeissy, and M. A. Farag, “Sweat metabolome and proteome: recent trends in analytical advances and potential biological functions,” Journal of Proteomics, 2021, 246: 104310.

    [31] S. J. Montain, S. N. Cheuvront, and H. C. Lukaski, “Sweat mineral-element responses during 7 h of exercise-heat stress,” International Journal of Sport Nutrition and Exercise Metabolism, 2007, 17(6): 574–582.

    [32] B. Caballero, P. M. Finglas, and F. Toldrá, “Encyclopedia of Food and Health,” Salt Lake City: Academic Press, 2016: 268–272.

    [33] F. Liu, Y. Wang, H. Corke, and H. Zhu, “Dynamic changes in flavonoids content during congou black tea processing,” LWT, 2022, 170: 114073.

    [34] A. Shevchuk, R. Megías-Pérez, Y. Zemedie, and N. Kuhnert, “Evaluation of carbohydrates and quality parameters in six types of commercial teas by targeted statistical analysis,” Food Research International, 2020, 133: 109122.

    [35] W. Huber and J. C. Koella, “A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites,” Acta Tropica, 1993, 55: 257-261.

    Muwen LIANG, Yabin ZHAO, Yaping LUO, Bin DU, Wei HU, Bing LIU, Xihui MU, and Zhaoyang TONG. Eu-MOF-Based Fluorescent Ratiometric Sensor by Detecting 3,4,5-Trihydroxybenzoic for Fingerprint Visualization on Porous Objects[J]. Photonic Sensors, 2024, 14(1): 240127
    Download Citation