• Laser & Optoelectronics Progress
  • Vol. 59, Issue 20, 2011008 (2022)
Yuxuan Zhao1、2, Xiangfeng Meng1, Xinyu Mao1, Lei Shi1, and Lijiang Zeng2、*
Author Affiliations
  • 1Greatar Tech Co., Ltd., Beijing 100083, China
  • 2Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/LOP202259.2011008 Cite this Article Set citation alerts
    Yuxuan Zhao, Xiangfeng Meng, Xinyu Mao, Lei Shi, Lijiang Zeng. Key Parameters of Augmented Reality Near-to-Eye Display System Based on Diffractive Waveguide[J]. Laser & Optoelectronics Progress, 2022, 59(20): 2011008 Copy Citation Text show less
    References

    [1] Azuma R. A survey of augmented reality[J]. Presence of Teleoperators & Virtual Environments, 6, 355-385(1997).

    [2] Azuma R, Baillot Y, Behringer R et al. Recent advances in augmented reality[J]. IEEE Computer Graphics and Applications, 21, 34-47(2001).

    [3] van Krevelen D W F, Poelman R. A survey of augmented reality technologies, applications and limitations[J]. International Journal of Virtual Reality, 9, 1-20(2010).

    [4] Lin C H, Hsu P H. Integrating procedural modelling process and immersive VR environment for architectural design education[J]. MATEC Web of Conferences, 104, 03007(2017).

    [5] Ibáñez M B, di Serio Á, Villarán D et al. Experimenting with electromagnetism using augmented reality: impact on flow student experience and educational effectiveness[J]. Computers & Education, 71, 1-13(2014).

    [6] de Buck S, Maes F, Ector J et al. An augmented reality system for patient-specific guidance of cardiac catheter ablation procedures[J]. IEEE Transactions on Medical Imaging, 24, 1512-1524(2005).

    [7] Xia X X, Guan F Y, Cai Y Y et al. Challenges and advancements for AR optical see-through near-eye displays: a review[J]. Frontiers in Virtual Reality, 3, 838237(2022).

    [8] Levola T. Diffractive optics for virtual reality displays[J]. Journal of the Society for Information Display, 14, 467-475(2012).

    [9] Hockett P, Ingleby T. Augmented reality with hololens: experiential architectures embedded in the real world[EB/OL]. https://www.authorea.com/users/71114/ articles/129932/_show_article

    [10] Furlan R. The future of augmented reality: Hololens-Microsoft’s AR headset shines despite rough edges[J]. IEEE Spectrum, 53, 21(2016).

    [11] Nakamura T, Takashima Y. Design of discretely depth-varying holographic grating for image guide based see-through and near-to-eye displays[J]. Optics Express, 26, 26520-26533(2018).

    [12] Hellmann C, Steiner S, Knoth R et al. Innovative systematic design approach for lightguide devices for XR applications[J]. Proceedings of SPIE, 11062, 110620G(2019).

    [13] Liu A, Zhang Y N, Weng Y S et al. Diffraction efficiency distribution of output grating in holographic waveguide display system[J]. IEEE Photonics Journal, 10, 7000310(2018).

    [14] Laakkonen P, Siitonen S, Levola T et al. High efficiency diffractive incouplers for light guides[J]. Proceedings of SPIE, 6896, 68960E(2008).

    [15] Levola T, Laakkonen P. Replicated slanted gratings with a high refractive index material for in and outcoupling of light[J]. Optics Express, 15, 2067-2074(2007).

    [16] Thanner C, Dudus A, Treiblmayr D et al. Nanoimprint lithography for augmented reality waveguide manufacturing[J]. Proceedings of SPIE, 11310, 1131010(2020).

    [17] Saarikko P. Diffractive exit-pupil expander with a large field of view[J]. Proceedings of SPIE, 7001, 700105(2008).

    [18] Äyräs P, Saarikko P, Levola T. Exit pupil expander with a large field of view based on diffractive optics[J]. Journal of the Society for Information Display, 17, 659-664(2009).

    [19] Vallius T, Tervo J. Waveguides with extended field of view[P].

    [20] Vallius T, Pietilae P P. Extended field of view in near-eye display using optically stitched imaging[P].

    [21] Wang C, Shen Z W, Weng Y S et al. Field-of-view expansion of waveguide display system with double-layer volume grating[J]. Acta Optica Sinica, 42, 0723001(2022).

    [22] Lu T T, Feng Q B, Wang Z et al. Design and fabrication of volume holographic gratings with large angular bandwidth and high diffraction efficiency[J]. Acta Optica Sinica, 41, 0205001(2021).

    [23] Wheelwright B, Sulai Y, Geng Y et al. Field of view: not just a number[J]. Proceedings of SPIE, 10676, 1067604(2018).

    [24] Kress B C[M]. Optical architectures for augmented-, virtual-, and mixed-reality headsets, 37-42(2020).

    [25] Cakmakci O, Hoffman D M, Balram N. 3D eyebox in augmented and virtual reality optics[J]. SID Symposium Digest of Technical Papers, 50, 438-441(2019).

    [26] Li K, Lake A. 31-3: eyebox evaluation in AR/VR near-eye display testing[J]. SID Symposium Digest of Technical Papers, 50, 434-437(2019).

    [27] Harding T H, Rash C E. Daylight luminance requirements for full-color, see-through, helmet-mounted display systems[J]. Optical Engineering, 56, 051404(2017).

    [28] Penczek J, Boynton P A, Meyer F M et al. Absolute radiometric and photometric measurements of near-eye displays: radiometric and photometric measurements of NED[J]. Journal of the Society for Information Display, 25, 215-221(2017).

    [29] Messer K, Schuck M H, Morley N I et al. Color uniformity correction of display device[P].

    [30] Ma D H, Zeng L J. Fabrication of low-stray-light gratings by broad-beam scanning exposure in the direction perpendicular to the grating grooves[J]. Optics Letters, 40, 1346-1349(2015).

    [31] Kuang Y, Liu J, Shi X L. Effect of surface roughness of optical waveguide on imaging quality and a formula of RSE tolerance and incident angle[J]. Optics Express, 28, 1103-1113(2020).

    [32] Xu C L, Zhao Y X, Zeng L J. Low-stray-light gratings fabricated with scanning exposure method based on Lloyd’s mirror for a high-contrast near-eye display in augmented reality[J]. Applied Optics, 61, 5626-5632(2022).

    [33] Ma D H. Broad-beam scanning exposure applied in the fabrication of holographic gratings[D](2017).

    Yuxuan Zhao, Xiangfeng Meng, Xinyu Mao, Lei Shi, Lijiang Zeng. Key Parameters of Augmented Reality Near-to-Eye Display System Based on Diffractive Waveguide[J]. Laser & Optoelectronics Progress, 2022, 59(20): 2011008
    Download Citation