• Chinese Optics Letters
  • Vol. 19, Issue 1, 013501 (2021)
Haitao Dai*, Zolkefl A. Y. Mohamed, Aixiang Xiao, Yongxiang Xue, Ziyang Guo, Yu Zhang, Xiaodong Zhang, and Changlong Liu
Author Affiliations
  • Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/COL202119.013501 Cite this Article Set citation alerts
    Haitao Dai, Zolkefl A. Y. Mohamed, Aixiang Xiao, Yongxiang Xue, Ziyang Guo, Yu Zhang, Xiaodong Zhang, Changlong Liu. Magnetically tunable Airy-like beam of magnetostatic surface spin waves[J]. Chinese Optics Letters, 2021, 19(1): 013501 Copy Citation Text show less
    References

    [1] G. A. Siviloglou, D. N. Christodoulides. Accelerating finite energy Airy beams. Opt. Lett., 32, 979(2007).

    [2] B. Y. Wei, S. Liu, P. Chen, S. X. Qi, Y. Zhang, W. Hu, Y. Q. Lu, J. L. Zhao. Vortex Airy beams directly generated via liquid crystal q-Airy-plates. Appl. Phys. Lett., 112, 121101(2018).

    [3] B. Y. Wei, P. Chen, S. J. Ge, W. Duan, W. Hu, Y. Q. Lu. Generation of self-healing and transverse accelerating optical vortices. Appl. Phys. Lett., 109, 121105(2016).

    [4] G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides. Observation of accelerating Airy beams. Phys. Rev. Lett., 99, 213901(2007).

    [5] P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, Z. Chen. Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt. Lett., 36, 2883(2011).

    [6] W. Liu, D. N. Neshev, I. V. Shadrivov, A. E. Miroshnichenko, Y. S. Kivshar. Plasmonic Airy beam manipulation in linear optical potentials. Opt. Lett., 36, 1164(2011).

    [7] D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, S. Tzortzakis. Observation of abruptly autofocusing waves. Opt. Lett., 36, 1842(2011).

    [8] M. O. Williams, C. W. McGrath, J. N. Kutz. Light-bullet routing and control with planar waveguide arrays. Opt. Express, 18, 11671(2010).

    [9] Y. Hu, S. Huang, P. Zhang, C. B. Lou, J. J. Xu, Z. G. Chen. Persistence and breakdown of Airy beams driven by an initial nonlinearity. Opt. Lett., 35, 3952(2010).

    [10] T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore, K. Dholakia. Light-sheet microscopy using an Airy beam. Nat. Methods, 11, 541(2014).

    [11] J. Wang, X. W. Hua, C. L. Guo, W. H. Liu, S. Jia. Airy-beam tomographic microscopy. Optica, 7, 790(2020).

    [12] M. Manousidaki, D. G. Papazoglou, M. Farsari, S. Tzortzakis. Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica, 3, 525(2016).

    [13] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810(2003).

    [14] J. Baumgartl, M. Mazilu, K. Dholakia. Optically mediated particle clearing using Airy wavepackets. Nat. Photon., 2, 675(2008).

    [15] N. K. Efremidis, Z. G. Chen, M. Segev, D. N. Christodoulides. Airy beams and accelerating waves: an overview of recent advances. Optica, 6, 686(2019).

    [16] A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, Y. S. Kivshar. Generation and near-field imaging of Airy surface plasmons. Phys. Rev. Lett., 107, 116802(2011).

    [17] P. Saari, K. Reivelt. Evidence of X-shaped propagation-invariant localized light waves. Phys. Rev. Lett., 79, 4135(1997).

    [18] D. Abdollahpour, S. Suntsov, D. G. Papazoglou, S. Tzortzakis. Spatiotemporal Airy light bullets in the linear and nonlinear regimes. Phys. Rev. Lett., 105, 253901(2010).

    [19] F. G. Mitri. Airy acoustical–sheet spinner tweezers. J. Appl. Phys., 120, 104901(2016).

    [20] S. H. Fu, Y. Tsur, J. Y. Zhou, L. Shemer, A. Arie. Propagation dynamics of Airy water-wave pulses. Phys. Rev. Lett., 115, 034501(2015).

    [21] P. Gruszecki, M. Krawczyk. Spin-wave beam propagation in ferromagnetic thin films with graded refractive index: Mirage effect and prospective applications. Phys. Rev. B, 97, 094424(2018).

    [22] V. E. Demidov, S. Urazhdin, S. O. Demokritov. Control of spin-wave phase and wavelength by electric current on the microscopic scale. Appl. Phys. Lett., 95, 262509(2009).

    [23] V. E. Demidov, J. Jersch, S. O. Demokritov, K. Rott, P. Krzysteczko, G. Reiss. Transformation of propagating spin-wave modes in microscopic waveguides with variable width. Phys. Rev. B, 79, 054417(2009).

    [24] K. Vogt, F. Y. Fradin, J. E. Pearson, T. Sebastian, S. D. Bader, B. Hillebrands, A. Hoffmann, H. Schultheiss. Realization of a spin-wave multiplexer. Nat. Comm., 5, 3727(2014).

    [25] K. Wagner, A. Kákay, K. Schultheiss, A. Henschke, T. Sebastian, H. Schultheiss. Magnetic domain walls as reconfigurable spin-wave nanochannels. Nat. Nanotechnol., 11, 432(2016).

    [26] H. T. Dai, A. X. Xiao, D. S. Wang, Y. X. Xue, M. N. Gao, X. D. Zhang, C. L. Liu, Q. N. Li. The focusing properties of spin wave with Fresnel lens phase profile. J. Magn. Magn. Mater., 505, 166756(2020).

    [27] J. N. Toedt, M. Mundkowski, D. Heitmann, S. Mendach, W. Hansen. Design and construction of a spin-wave lens. Sci. Rep., 6, 33169(2016).

    [28] T. Schneider, A. A. Serga, A. V. Chumak, C. W. Sandweg, S. Trudel, S. Wolff, M. P. Kostylev, V. S. Tiberkevich, A. N. Slavin, B. Hillebrands. Nondiffractive subwavelength wave beams in a medium with externally controlled anisotropy. Phys. Rev. Lett., 104, 197203(2010).

    [29] V. E. Demidov, S. O. Demokritov, D. Birt, B. O’Gorman, M. Tsoi, X. Li. Radiation of spin waves from the open end of a microscopic magnetic-film waveguide. Phys. Rev. B, 80, 014429(2009).

    [30] X. Yan, L. X. Guo, M. J. Cheng, S. R. Chai. Free-space propagation of autofocusing Airy vortex beams with controllable intensity gradients. Chin. Opt. Lett., 17, 040101(2019).

    [31] Y. Zhang, B. Y. Wei, S. Liu, P. Li, X. Chen, Y. L. Wu, X. A. Dou, J. L. Zhao. Circular Airy beams realized via the photopatterning of liquid crystals. Chin. Opt. Lett., 18, 080008(2020).

    [32] D. M. Cottrell, J. A. Davis, T. M. Hazard. Direct generation of accelerating Airy beams using a 3/2 phase-only pattern. Opt. Lett., 34, 2634(2009).

    [33] R. W. Damon, J. R. Eshbach. Magnetostatic modes of a ferromagnetic slab. J. Appl. Phys., 31, S104(1960).

    [34] B. A. Kalinikos, A. N. Slavin. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C, 19, 7013(1986).

    [35] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. V. Waeyenberge. The design and verification of MuMax3. AIP. Adv., 4, 107133(2014).

    [36] N. J. Whitehead, S. A. R. Horsley, T. G. Philbin, V. V. Kruglyak. A Luneburg lens for spin waves. Appl. Phys. Lett., 113, 212404(2018).

    [37] H. Hata, T. Moriyama, K. Tanabe, K. Kobayashi, R. Matsumoto, S. Murakami, J. Ohe, D. Chiba, T. Ono. Micromagnetic simulation of spin wave propagation in a ferromagnetic film with different thicknesses. J. Magn. Soc. Jpn., 39, 151(2015).

    [38] H. T. Dai, Y. J. Liu, D. Luo, X. W. Sun. Propagation properties of an optical vortex carried by an Airy beam: experimental implementation. Opt. Lett., 36, 1617(2011).

    CLP Journals

    [1] Zixiao Miao, Qican Zhang. Dual-frequency fringe for improving measurement accuracy of three-dimensional shape measurement[J]. Chinese Optics Letters, 2021, 19(10): 102601

    Data from CrossRef

    [1] Han Zhang, Haitao Dai, Xichen Hao, Yuhan Wang, Chunzi Xing, Qieni Lu, Jia Li, Yikai Fu, Meini Gao, Zhenda Chen, Yaxian Cao, Jingtao Zhu. Airy-type X-ray states generated using 3/2 flat diffractive optics. Optics Express, 31, 18063(2023).

    Haitao Dai, Zolkefl A. Y. Mohamed, Aixiang Xiao, Yongxiang Xue, Ziyang Guo, Yu Zhang, Xiaodong Zhang, Changlong Liu. Magnetically tunable Airy-like beam of magnetostatic surface spin waves[J]. Chinese Optics Letters, 2021, 19(1): 013501
    Download Citation