• Acta Optica Sinica
  • Vol. 38, Issue 6, 0620002 (2018)
Hanqing Sun* and Yanwei Pang
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/AOS201838.0620002 Cite this Article Set citation alerts
    Hanqing Sun, Yanwei Pang. An Neural Network Framework of Self-Learning Uncertainty[J]. Acta Optica Sinica, 2018, 38(6): 0620002 Copy Citation Text show less
    References

    [1] Matti D, Ekenel H K, Thiran J P. Combining LiDAR space clustering and convolutional neural networks for pedestrian detection[C]. Lecce: IEEE International Conference on Advanced Video and Signal Based Surveillance, 1-6(2017).

    [2] Liu C H, Li Z, Xu C et al. BRDF model for commonly used materials of space targets based on deep neural network[J]. Acta Optica Sinica, 37, 1129001(2017).

    [3] Lu Y S, Li Y X, Liu B et al. Hyperspectral data haze monitoring based on deep residual network[J]. Acta Optica Sinica, 37, 1128001(2017).

    [4] Li S M, Lei G Q, Fan R. Depth map super-resolution reconstruction based on deep convolutional neural networks[J]. Acta Optica Sinica, 37, 1210002(2017).

    [5] Xiao J S, Liu E Y, Zhu L et al. Improved image super-resolution algorithm based on convolutional neural network[J]. Acta Optica Sinica, 37, 0318011(2017).

    [6] Pang Y, Sun M, Jiang X et al. Convolution in convolution for network in network[J]. IEEE Transactions on Neural Networks and Learning Systems, 47, 1-11(2017). http://ieeexplore.ieee.org/document/7879808/

    [7] Cao J, Pang Y, Li X et al. Randomly translational activation inspired by the input distributions of ReLU[J]. Neurocomputing(2017). http://www.researchgate.net/publication/319950336_Randomly_Translational_Activation_Inspired_by_the_Input_Distributions_of_ReLU

    [8] Hou C C, He Y Q, Jiang X H et al. A deep convolutional neural network based on two-stream convolutional unit[J]. Laser & Optoelectronics Progress, 55, 021005(2018).

    [9] Cao J, Pang Y, Li X. Learning multilayer channel features for pedestrian detection[J]. IEEE Transactions on Image Processing, 26, 3210-3220(2017). http://dl.acm.org/citation.cfm?id=3101335

    [10] Morchhale S, Pauca V P, Plemmons R J et al. Classification of pixel-level fused hyperspectral and lidar data using deep convolutional neural networks[C]. Los Angeles: Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 1-5(2016).

    [11] Zhao G, Xiao X, Yuan J et al. Fusion of 3D-LIDAR and camera data for scene parsing[J]. Journal of Visual Communication and Image Representation, 25, 165-183(2014). http://www.sciencedirect.com/science/article/pii/S1047320313001211

    [12] Du X, Ang M H, Rus D. Car detection for autonomous vehicle: LIDAR and vision fusion approach through deep learning framework[C]. Vancouver: IEEE/RSJ International Conference on Intelligent Robots and Systems, 749-754(2017).

    [13] Dieterle T, Particke F, Patino-Studencki L et al. Sensor data fusion of LIDAR with stereo RGB-D camera for object tracking[A]. Glasgow: 2017 IEEE Sensors, 1-3(2017).

    [14] Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning[C]. New York: Proceedings of the 33rd International Conference on Machine Learning, 48, 1050-1059(2016).

    [15] Krzywinski M, Altman N. Points of significance: importance of being uncertain[J]. Nature Methods, 10, 809-810(2013). http://www.nature.com/doifinder/10.1038/nmeth.2613

    [16] Ghahramani Z. Probabilistic machine learning and artificial intelligence[J]. Nature, 521, 452(2015). http://www.nature.com/nature/journal/v521/n7553/abs/nature14541.html

    [17] Teerapittayanon S. McDanel B, Kung H T. BranchyNet: fast inference via early exiting from deep neural networks[C]. Cancun: 23rd International Conference on Pattern Recognition, 2464-2469(2016).

    [18] Srivastava N, Hinton G, Krizhevsky A et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 15, 1929-1958(2014). http://dl.acm.org/citation.cfm?id=2670313&preflayout=flat

    [19] Huang G. Liu Z, van der Maaten L, et al. Densely connected convolutional networks[C]. Honolulu: IEEE Conference on Computer Vision and Pattern Recognition, 2261-2269(2017).

    [20] Kendall A, Badrinarayanan V, Cipolla R. Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding[J]. Computer Science, 1511(2015). http://www.oalib.com/paper/4054698

    [21] He K, Zhang X, Ren S et al. Deep Residual Learning for Image Recognition[C]. Las Vegas: 2016 IEEE Conference on Computer Vision and Pattern Recognition, 770-778(2016).

    [22] Wan L, Zeiler M, Zhang S et al. Regularization of neural networks using dropconnect[C]. Atlanta: Proceedings of the 30th International Conference on Machine Learning, 28, 1058-1066(2013).

    [23] Barrow E, Eastwood M, Jayne C. Selective dropout for deep neural networks[C]. Kyoto: Proceedings of the 23rd International Conference on Neural Information Processing, 519-528(2016).

    [24] Isobe S, Arai S. Deep convolutional encoder-decoder network with model uncertainty for semantic segmentation[C]. IEEE International Conference on Innovations in Intelligent Systems and Applications, 365-370(2017).

    [25] Goodfellow I, Warde-Farley D, Mirza M et al. Maxout networks[C]. Atlanta: 2013 International Conference on Machine Learning, 28, 1319-1327(2013).

    [26] Chang J-R, Chen Y-S[2018-4-24]. Batch-normalized maxout network in network [2018-4-24].https://arxiv., org/abs/1511, 02583.

    [27] Krizhevsky A, Hinton G E. Learning multiple layers of features from tiny images[R]. CiteSeerX(2009).

    [28] Nesterov Y E. A method for solving the convex programming problem with convergence rate O(1/k2) [J]. Soviet Math Dokl, 269, 543-547(1983). http://www.researchgate.net/publication/257291640_A_method_of_solving_a_convex_programming_problem_with_convergence_rate_O

    [29] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for scene segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017). http://europepmc.org/abstract/MED/28060704

    Hanqing Sun, Yanwei Pang. An Neural Network Framework of Self-Learning Uncertainty[J]. Acta Optica Sinica, 2018, 38(6): 0620002
    Download Citation