• Acta Optica Sinica
  • Vol. 40, Issue 1, 0111022 (2020)
Yanqiu Guan, Qiurong Yan*, Shengtao Yang, Bing Li, Qianqian Cao, and Zheyu Fang
Author Affiliations
  • Information Engineering School of Nanchang University, Nanchang, Jiangxi 330031, China
  • show less
    DOI: 10.3788/AOS202040.0111022 Cite this Article Set citation alerts
    Yanqiu Guan, Qiurong Yan, Shengtao Yang, Bing Li, Qianqian Cao, Zheyu Fang. Single-Photon Compressive Imaging Based on Residual Codec Network[J]. Acta Optica Sinica, 2020, 40(1): 0111022 Copy Citation Text show less
    References

    [1] Studer V, Bobin J, Chahid M et al. Compressive fluorescence microscopy for biological and hyperspectral imaging[J]. Proceedings of the National Academy of Sciences, 109, E1679-E1687(2012).

    [2] Ueda T. Yuh W T C. Single-photon emission CT imaging in acute stroke[J]. Neuroimaging clinics of North America, 15, 543-551(2005).

    [3] Pourmorteza A, Symons R, Sandfort V et al. Abdominal imaging with contrast-enhanced photon-counting CT: first human experience[J]. Radiology, 279, 239-245(2016).

    [4] Taguchi K, Iwanczyk J S. Vision 20/20: single photon counting X-ray detectors in medical imaging[J]. Medical Physics, 40, 100901(2013).

    [5] Chen Y, Periasamy A[M]. 13-time-correlated single-photon counting fluorescence lifetime imaging-FRET microscopy for protein localization, 239-259(2005).

    [6] Becker W, Bergmann A, Hink M A et al. Fluorescence lifetime imaging by time-correlated single-photon counting[J]. Microscopy Research and Technique, 63, 58-66(2004).

    [7] Liu Y X, Shi J H, Zeng G H. Single-photon-counting polarization ghost imaging[J]. Applied Optics, 55, 10347-10351(2016).

    [8] Liu X F, Yu W K, Yao X R et al. Measurement dimensions compressed spectral imaging with a single point detector[J]. Optics Communications, 365, 173-179(2016).

    [9] Qi L, Just F, Leuchs G et al. Autonomous absolute calibration of an ICCD camera in single-photon detection regime[J]. Optics Express, 24, 26444-26453(2016).

    [10] Morris P A, Aspden R S. Bell J E C, et al. Imaging with a small number of photons[J]. Nature Communications, 6, 5913(2015).

    [11] Zhang X H, Zhao B S, Miao Z H et al. Study of ultraviolet single photon imaging system[J]. Acta Physica Sinica, 57, 4238-4243(2008).

    [12] Ni Q L, He L P, Liu S J et al. Extreme ultraviolet single photon-counting imaging system based on induced charge position-sensitive anode[J]. Optics and Precision Engineering, 18, 2543-2548(2010).

    [13] Yan Q R, Zhao B S, Liu Y A et al. Two-dimensional photon counting imaging detector based on a Vernier position sensitive anode readout[J]. Chinese Physics C, 35, 368-373(2011).

    [14] Calvi M, Carniti P, Cassina L et al. Characterization of the Hamamatsu H12700A-03 and R12699-03 multi-anode photomultiplier tubes[J]. Journal of Instrumentation, 10, P09021(2015).

    [15] Martinenghi E, di Sieno L, Contini D et al. Time-resolved single-photon detection module based on silicon photomultiplier: a novel building block for time-correlated measurement systems[J]. Review of Scientific Instruments, 87, 073101(2016).

    [16] Yu W K, Liu X F, Yao X R et al. -02-27)[2019-08-28]. https:∥arxiv.gg363., site/abs/1202, 5866(2012).

    [17] He C W, Yin T T, Yu W B et al. Information-weighted Gaussian matrix in compressed sensing for ECG. [C]∥2016 Chinese Control and Decision Conference (CCDC), May 28-30, 2016, Yinchuan, China. New York: IEEE, 3827-3830(2016).

    [18] Zhu Z Z, Zhou C B, Liu F L et al. Binarized measurement matrix for compressive sensing[J]. Journal of Microwaves, 30, 79-83, 96(2014).

    [19] Xu S, Yin H P, Chai Y et al. An improved Toeplitz measurement matrix for compressive sensing[J]. International Journal of Distributed Sensor Networks, 10, 846757(2014).

    [20] Ji S H, Xue Y, Carin L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 56, 2346-2356(2008).

    [21] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 53, 4655-4666(2007).

    [22] Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 4, 310-316(2010).

    [23] Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 27, 265-274(2009).

    [24] Li C. An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing[D]. USA: Rice University(2010).

    [25] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).

    [26] Chen Y, Fan R S, Wang J X et al. Cloud detection of ZY-3 satellite remote sensing images based on deep learning[J]. Acta Optica Sinica, 38, 0128005(2018).

    [27] Dong C, Loy C C, He K M et al. Learning a deep convolutional network for image super-resolution[M]. ∥Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science. Cham: Springer, 8692, 184-199(2014).

    [28] Zhao H, An W S. Image salient object detection combined with deep learning[J]. Laser & Optoelectronics Progress, 55, 121003(2018).

    [29] Svoboda P, Hradis M, Barina D et al. -05-02)[2019-08-28]. https:∥arxiv.gg363., site/abs/1605, 00366(2016).

    [30] Kulkarni K, Lohit S, Turaga P et al. ReconNet: non-iterative reconstruction of images from compressively sensed measurements. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 449-458(2016).

    [31] Shimobaba T, Endo Y, Nishitsuji T et al. Computational ghost imaging using deep learning[J]. Optics Communications, 413, 147-151(2018).

    [32] Mousavi A, Patel A B, Baraniuk R G. A deep learning approach to structured signal recovery. [C]∥2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), September 29-October 2, 2015, Monticello, IL, USA. New York: IEEE, 1336-1343(2015).

    [33] Yao H T, Dai F, Zhang S L et al. DR 2-Net: deep residual reconstruction network for image compressive sensing[J]. Neurocomputing, 359, 483-493(2019).

    [34] Xie X M, Wang Y X, Shi G M et al. Adaptive measurement network for CS image reconstruction[M]. ∥Yang J F, Hu Q H, Cheng M M, et al. Computer vision. CCCV 2017. Communications in computer and information science. Singapore: Springer, 772, 407-417(2017).

    [35] Chen H, Zhang Y, Kalra M K et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 36, 2524-2535(2017).

    [36] Xie J, Xu L, Chen E. Image denoising and inpainting with deep neural networks. [C]∥Advances in Neural Information Processing Systems, December 3-6, 2012, Lake Tahoe, Nevada, United States. Canada: NIPS, 341-349(2012).

    [37] Agostinelli F, Anderson M R, Lee H. Adaptive multi-column deep neural networks with application to robust image denoising. [C]∥Advances in Neural Information Processing Systems, December 5-8, 2013, Lake Tahoe, Nevada, United States. Canada: NIPS, 1493-1501(2013).

    [38] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 770-778(2016).

    [39] Srivastava R K, Greff K, Schmidhuber J. Training very deep networks. [C]∥Advances in Neural Information Processing Systems, December 7-12, 2015, Montreal, Quebec, Canada. Canada: NIPS, 2377-2385(2015).

    [40] Courbariaux M, Hubara I, Soudry D et al. -03-17)[2019-08-28]. https:∥arxiv.gg363., site/abs/1602, 02830(2016).

    [41] Yan Q R, Wang H, Yuan C L et al. Large-area single photon compressive imaging based on multiple micro-mirrors combination imaging method[J]. Optics Express, 26, 19080-19090(2018).

    Yanqiu Guan, Qiurong Yan, Shengtao Yang, Bing Li, Qianqian Cao, Zheyu Fang. Single-Photon Compressive Imaging Based on Residual Codec Network[J]. Acta Optica Sinica, 2020, 40(1): 0111022
    Download Citation